giải phương trình \(x=2005-2006\left(2005-2006x^2\right)^2\)
giải phương trình :
\(\frac{x^2+2006x-1}{2006}+\frac{x^2+2006x-2}{2005}+...+\frac{x^2+2006x-7}{2000}=\frac{x^2+2006x-8}{1999}+...+\frac{x^2+2006x-14}{1993}\)
Trừ cả 2 vế cho 7 ta được:
\(\frac{x^2+2006x-1}{2006}-1+\frac{x^2+2006x-2}{2005}-1+...+\frac{x^2+2006x-7}{2000}-1\)
\(=\frac{x^2+2006x-8}{1999}-1+...+\frac{x^2+2006x-14}{1993}-1\)
=> \(\frac{x^2+2006x-2007}{2006}+\frac{x^2+2006x-2007}{2005}+...+\frac{x^2+2006x-2007}{2000}=\frac{x^2+2006x-2007}{1999}+...+\frac{x^2+2006x-2007}{1993}\)
=> \(\left(x^2+2006x-2007\right)\left(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}-\frac{1}{1999}-...-\frac{1}{1993}\right)=0\)
=> x2 + 2006x -2007 = 0. Vì \(\frac{1}{2006}+\frac{1}{2005}+...+\frac{1}{2000}
mình sửa lại chút sai xót bài giải trên: nhận xét 1/2006+...+ 1/2000-1/1999-...- 1/993 < 0 nhé! sửa dấu + thành dấu -
Giải phương trình:
\(\left|x-2005\right|^{2005}+\left|x-2006\right|^{2006}=\)\(1\)
Kèm cách giải nhé
Tick cho
Em chỉ bít đáp án thui ạ . Là 2005 ạ
tìm nghiệm nguyên dương của phương trình ?
\(\left(1+x+\sqrt{x^2-1}\right)^{2005}+\left(1+x-\sqrt{x^2-1}\right)^{2005}=2^{2006}\)
\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)
Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)
Áp dụng Côsi ta có:
\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)
\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)
\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)
\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)
Dấu "=" xảy ra khi và chỉ khi t = 1.
Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)
\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)
Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)
a, Cho x = 2005 . Tính :\(A=x^{2005}-2006x^{2004}+2006x^{2003}-...........+2006x^3-2006x^2+2006x-1\)b, Tìm tổng các hệ số của đa thức hận được sau khi bỏ dấu ngoặc trong biểu thức :
\(A_{\left(x\right)}=\left(3-4x+x^2\right)^{2017}\cdot\left(3+4x+x^2\right)^{2018}\)
a,\(A=x^{2005}-2006x^{2004}+............+2006x-1\\ A=x^{2005}-\left(x+1\right)x^{2004}+..............+\left(x+1\right)x-1\\ A=x^{2005}-x^{2005}+x^{2004}-x^{2004}+.............+x^2+x-1\\ A=x-1\\ \Leftrightarrow A=2004\)vậy
a,A=x2005−2006x2004+............+2006x−1A=x2005−(x+1)x2004+..............+(x+1)x−1A=x2005−x2005+x2004−x2004+.............+x2+x−1A=x−1⇔A=2004
Bài 4: Cho x=2005
Tính giá trị của biểu thức:
x2005-2006.x2004+2006.x2003-2006x2002+...-2006x2+2006x-1
Quý làm giúp mik đi
\(A=x^{2005}-2005x^{2004}-x^{2004}+2005x^{2003}+x^{2003}-2005x^{2002}-.....+x^3-2005x^2-x^2+2005x+x-2005+2004\)\(=\left(x-2005\right)x^{2004}-\left(x-2005\right)x^{2003}+\left(x-2005\right)x^{2002}-....+\left(x-2005\right)x^2-\left(x-2005\right)x+\left(x-2005\right)+2004\)\(=\left(x-2005\right)\left(x^{2004}-x^{2003}+x^{2002}-......+x^2-x+1\right)+2004\)
Với x = 2005 => x - 2005 =0
=> A =2004
sao ma 2006.x2004 lai = 2005x2004 - x2004 duoc
Cho x = 2005. Tính giá trị của biểu thức:
\(x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1\)
Ta có :
\(x=2005\Rightarrow x+1=2006\)
Thay \(2006=x+1\) vào biểu thức trên ta được :
\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)
\(=x-1\) mà \(x=2005\)
\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)
Bài 4: Cho x=2005
Tính giá trị của biểu thức:
x2005-2006.x2004+2006.x2003-2006x2002+...-2006x2-2006x-1
Giúp mình bài này nha sẽ có 3 like
Thay x=2005 vào biểu thức, ta được:
20052005-2006*20052004+...+2006*20052-2006*2005-1
=20052005-(2006*20052004-..-2006*20052+2006*2005+1)
Đặt A=(2006*20052004-..-2006*20052+2006*2005+1)
2005A=2006*20052005-..-2006*20053+2006*20052+2005
2005A+2005*2006=2006*20052005-..-2006*20053+2006*20052+2006*2005+1+2004=A+2004
2005A-A=2004-2005*2006
2004A=2004-2005*2006
A=(2004-2005*2006)/2004=1-(2005*2006)/2004
=>20052005-(2006*20052004-..-2006*20052+2006*2005+1)=20052005-1+(2005*2006)/2004
đến đây cậu làm được chưa, quy đồng lên rồi tính, phân phối ra ý
Rút gọn các biểu thức sau
A= x^6-2007x^5+2007x^4-2007x^3+2007x^2-2007x+2007 với x=2006
B= x^10-2006x^9+2006x^8-2006x^7+...+2006x^2-2006 với x=2005
Tính giá trị biểu thức sau
1, A=6+5^2+5^3+5^4 +....+5^1996+5^1997
2,B=10+9^2+9^3+9^4+....+9^2004+9^2005
3, C=x^20-2006x^19+x^2018-2006x^17+....+2006x^2-2006x+2006 với x=2005