CMBDT
\(ab+bc+cd+da\le\frac{\left(a+b+c+d\right)^2}{4}\)
\(abc+bcd+cda+dab\le\frac{\left(a+b+c+d\right)^3}{16}\)
Cho a,b,c,d>0
\(16\left(abc+bcd+cda+dab\right)\le\left(a+b+c+d\right)^3\)
CHỨNG MINH \(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3\)
Cho, x,y,z >0
CM : \(16\left(abc+bcd+cda+dab\right)\le\left(a+b+c+d\right)^4\)
bài này sai đề nha, phải (a+b+c+d)^3 mới đúng
abc+bcd+cda+dab
=ab(c+d)+cd(a+b)≤1/4(a+b)2(c+d)+1/4(c+d)2(a+b)=1/4(a+b)(c+d)(a+b+c+d)≤1/16(a+b+c+d)3
=>16(abc+bcd+cda+dad)<=(a+b+c+d)3
cho a,b,c,d là các số dương . CMR :
\(\frac{abc}{\left(a+d\right)\left(b+d\right)\left(c+d\right)}+\frac{bcd}{\left(b+a\right)\left(c+a\right)\left(d+a\right)}+\frac{cda}{\left(a+b\right)\left(c+b\right)\left(d+b\right)}+\frac{dab}{\left(d+c\right)\left(a+c\right)\left(b+c\right)}\ge\frac{1}{2}\)
cho a,b,c,d \(\in\left[0;1\right]\)cmr
\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}\)
Đặt \(\hept{\begin{cases}x=\frac{a+b}{2}\\y=\frac{c+d}{2}\end{cases}}\)
Ta có:
\(\left(1-a\right)\left(1-b\right)\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\Rightarrow ab+bc+ca+1\ge bc+ca+a+b=\left(a+b\right)\left(c+1\right)\ge\left(a+b\right)\left(c+d\right)\left(1\right)\)
Tương tự ta có:
\(bc+cd+db+1\ge\left(a+b\right)\left(b+d\right)\left(2\right)\)
\(cd+da+ac+1\ge\left(a+b\right)\left(c+d\right)\left(3\right)\)
\(da+ab+bd+1\ge\left(a+b\right)\left(c+d\right)\left(4\right)\)
Từ (1), (2), (3), (4) ta có:
\(VT\le\frac{a+b+c+d}{\left(a+b\right)\left(c+d\right)}=\frac{x+y}{2xy}\le\frac{xy+1}{2xy}\left(@\right)\)
Ta lại có:
\(VP\ge\frac{3}{4}+\frac{1}{4x^2y^2}\left(@@\right)\)
Từ \(\left(@\right),\left(@@\right)\)cái cần chứng minh trở thành.
\(\frac{xy+1}{2xy}\le\frac{3}{4}+\frac{1}{4x^2y^2}\)
\(\Leftrightarrow\left(xy-1\right)^2\ge0\)(đúng)
Vậy ta có ĐPCM.
Cho a,b,c là các số thực dương.
CMR: \(\sqrt[3]{\frac{abc+bcd+cda+dab}{4}}\le\sqrt{\frac{ab+ac+ad+bc+bd+cd}{6}}\)
Theo định lý Rolle ta thấy tồn tại các số dương x, y ,z sao cho:
\(abc+bcd+cda+dab=4xyz\)
\(ab+ac+ad+bc+bd+cd=2\left(xy+yz+xz\right)\)
Như vậy BĐT cần c/m trở thành:
\(\sqrt[3]{xyz}\le\sqrt{\frac{xy+yz+zx}{3}}\) đúng theo BĐT AM - GM
Vậy BĐT đã cho đc c/m
cho 3 số thực dương a,b,c. chứng minh
\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)
1. cho a,b,c là 3 số dương thỏa mãn abc=1 . CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
2. tìm GTLN của biểu thức: \(N=\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\)
ta có:\(ab+bc+ac=abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Áp dụng BĐT :\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)ta có:
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+c\right)+\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right).\)\(\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\right)=\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right).\)
Tương tự ta có :\(\frac{1}{a+2b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right);\frac{1}{a+b+2c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right).\)
Cộng ba BĐT lại ta có:
\(Q\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}.\)
Đẳng thức xảy ra khi \(a=b=c=3\).Max=\(\frac{1}{4}\)