D=1.1+2.2+3.3+....+30.30
Tính D
d) D=1.1! + 2.2! + 3.3! +...+ 6.6!
e) E= 1.1! + 2.2! + 3.3! +...+ n.n!
Mình nhờ các bạn giải cả bài ra giùm mình nhé!!!!
tính tổng D=1+1.1!+2.2!+3.3!+...+100.100!
Tính
D=1.1!+2.2!+3.3!+...+18.18!
Sao lại có dấu "!" nhở?! Cần 1 lời giải thích Dương Thị Trà My!
cho các dãy số:
S1=1.1
S2=2.2-1.1
S3=3.3-(2.2-1.1)
S4=4.4[3.3(2.2-1.1]
a) Hãy viết dãy số S5
b) Nếu các dãy số tiếp tục nhue thế thì tổng S2007 có giá trị là bao nhiêu?
Ta có quy luật như sau:
S1=1.1+1^2=1
S2=2.2-1.1=2^2-1^2+4-1=3
S3=3.3-(2.2-1.1)=3^2-(2^2-1^2)=9-(4-1)=9-3=6
S4=4.4.[3.3.(2.2-1.1)]=4^2.[3^2.(2^2-1^1)]=16.[9.(4-1)]=16.(9.3)=16.27=432
S5=?
Đây là một câu hỏi dành cho những bạn chuyên toán bài trên các bạn đã được gợi ý một phần ba gợi ý rồi đấy.
S5 vẫn sẽ là một câu hỏi cho các bạn, các bạn chỉ cần tìm ra quy luật của các tổng là nhận ra ngay.
Nếu các bạn nhận ra thì chúc mừng.
E= 1.1+2.2+3.3+...+50.50
F = 1.1+3.3+5.5+...+45.45
G=2.2+4.4+6.6+...+30.30
H=1.1+4.4+7.7+...+100.100
Giải Cụ thể ạ
Em đang cần gấp ạ
E=1.1+2.2+3.3+...+50.50
E= 1. ( 2-1) + 2. (3-1)+..+50.(51-1)
E=1.2-1.1+2.3-2.1+...+50.51-50.1
E=(1.2+2.3+...+50.51)-(1.1+2.1+...+50.1)
đặt là A đặt là B
xét A=1.2+2.3+...+50.51
3A=1.2.3+2.3.3+...+50.51.3
=1.2.3+2.3.4-1.2.3+..+50.51.52-49.50.51
=50.51.52
=132600
xét B= 1.1+1.2+...+50.1
B=1+2+3+...+50
số số hạng của A chính bằng số số hạng của dãy số tự nhiên liên tiếp cách đều 1 đơn vị từ 1 đến 50
số số hạng của A là 50:1+1=50 ( số hạng )
tổng A là (50+1).50:2=1275
thay vào E ta có
E=132600-1275
E=11925
vậy E=11925
đúng thì k
1.1+2.2+3.3+...+98.98
Ta chứng mình: Với `n\in NN^(**)` ta có `X=1^2+2^2+...+n^2=(n(n+1)(2n+1))/6(**)`
Thật vậy:
- Với `n=1` thì `(**)` đúng.
- Giả sử `(**)` đúng với `n=k` hay `1^2+2^2+...+k^2=(k(k+1)(2k+1))/6`
Ta cần chứng minh `(**)` đúng với `n=k+1`
hay `1^2+2^2+...+k^2+(k+1)^2=((k+1)(k+2)(2k+3))/6`
`<=>(k(k+1)(2k+1))/6+(k+1)^2=((k+1)(k+2)(2k+3))/6`
`<=>(k(k+1)(2k+1)+6(k+1)^2)/6=((k+1)(k+2)(2k+3))/6`
`=>k(k+1)(2k+1)+6(k+1)^2=(k+1)(k+2)(2k+3)`
`<=>(k+1)[k(2k+1)+6(k+1)]=(k+1)(k+2)(2k+3)`
`<=>(k+1)(2k^2+7k+6)=(k+1)(k+2)(2k+3)`
`<=>(k+1)[(2k^2+3k)+(4k+6)]=(k+1)(k+2)(2k+3)`
`<=>(k+1)[k(2k+3)+2(2k+3)]=(k+1)(k+2)(2k+3)`
`<=>(k+1)(k+2)(2k+3)=(k+1)(k+2)(2k+3)(` Hiển nhiên đúng `)`
Vậy theo nguyên lý quy nạp thì`(**)` được c/m.
------------
Áp dụng `(**)` ta có
`1.1+2.2+3.3+...+98.98`
`=1^2+2^2+3^2+...+98^2`
`=(98(98+1)(2.98+1))/6`
`=318549`
`=
1.1+2.2+3.3+.....+1999.1999
1.1+2.2+3.3+.....+1999.1999
1.1+2.2+3.3+....+1999.1999