Cho tam giác ABC (AB khác AC). Đường trung trực của BC cắt tia phân giác Ax của góc A ở điểm O. Kẻ OE, OF theo thứ tự vuông góc với AB, AC.
a) Cm: BE = CF.
b) Kẻ EF cắt BC tại M và cắt tia Ax tại I. Cm M là trung điểm của cạnh BC.
c) Cm: .
CHO tam giác ABC (ABkhácAC).Đường trung trực của BC cắt tia phân giác Ax của góc A ở O. Kẻ OE,OF theo thứ tự vuông góc với AB và AC. CM :
a. BE=CE
b. Nối EF cắt BC tại M và cắt Ax tại I.CM: M là trung điểm cạnh BC
c. IA^2 + IE^2 + IO^2 + IF^2 =AO^2
cho tam giác ABC đường tchung trực của cạnh BC cắt tia phân giác AX của góc A ở điểm O. Kẻ OE,OF theo thứ tự Vuông góc với AB và AC
a,CM: BE=CF
b,nối EF cắt BC ại M,cắt AX tại I. CM : M là trung điểm BC
c, CM: IA^2+IE^2+IO^2+IF^2=AO^2
Giúp mình với mình đang cần ạ
Cho tam giác ABC (AB khác AC). Đường trung trực của đoạn BC tại H cắt tia phân giác Ax của góc A tại K. Kẻ KE, KF theo thứ tự vuông góc với AB và AC.
a. Chứng minh rằng BE = CF
b. Nối EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC
Cho tam giác ABC (AB không bằng AC). Đường trung trực của cạch BC cắt tia phân giác Ax của góc A ở điểm O. Kẻ OE, OF theo thứ tự vuông góc với AB, AC.
a) Chứng minh BE = CF.
b) Gọi M là trung điểm của BC. Chứng minh ba điểm E, M, F thẳng hàng.
c) EF cắt Ax tại I. Chứng minh IA^2 + IE^2 + IO^2 + IF^2 = AO^2
Cho tam giác ABC ( AB AC). Đường trung trực của đoạn BC tai H cắt tia phân giác Ax của góc A tại K. Kẻ KE, KF theo thứ tự vuông góc với AB và AC
a) Chứng minh rằng BE = CF
b) Nối EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC
a, Ax là phân giác của góc BAC (gt)
K thuộc Ax
KE _|_ AB (gt); KF _|_ AC (gt)
=> KE = KF (định lí) (1)
K thuộc đường trung trực của BC (gt)
=> KB = KC (Định lí)
xét tam giác EKB và tam giác FKC có : góc BEK = góc KFC = 90
=> tam giác EKB = tam giác FKC (ch-cgv)
=> BE = CF (đn)
a ) Ta có Ax là đường trung trực của tam giác ABC => Ax là đường trung trực của tam giác ABC
Xét tam giác BEK vuông tại E và tam giác CFK vuông tại F ta có :
BK = KC ( cmt )
BKE = CKF ( đối đỉnh )
=> Tam giác BEK = tam giác CFK
=> BE = CF ( 2 cạnh tương ứng )
mik chỉ làm đc câu a thoi maf hình như đề bị sai á
cho tam giác ABC ( AB khác AC ) Trung trực BC cắt phân giác của góc A tại O . Kẻ OE vuông góc AB ; OF vuông góc AC
a) chứng minh BE =CF
b) EF giao BC tại M ; EF giao Ax tại I chứng minh M trung điểm BC
1. Cho tam giác ABC ( AB khác AC). M là trung điểm của Bc, đường trung trực của cạnh BC cắt tia phân giác Ax của góc A tại O, cắt AC tại N, từ N kẻ đường thẳng vuông góc với AO cắt AB tại G. Gọi E, F lần lượt Là chân các đường vuông góc hạ từ O xuống AB, AC.
a,Cm tam giác AGO= ANO
b, Cmr GN song song EF
c, Các đường thẳng EF, BC, ON đồng quy
Cho tam giác ABC, AB<AC, M là trung điểm của BC. Kẻ tia phân giác AX của góc A. Qua M kẻ dường thẳng vuông góc với BC cắt AX tại N
a, CM: NB=NC
b, qua M kẻ đường thẳng vuông góc với AX cắt AB ,ÁC , ÀX, lần lượt tại E, F,Đ. CM AE=AF
c, Qua B kẻ dường thẳng song song với AX cắt EF tại P. Cm: M là trung điểm của PE
cho tam giác ABC ( AB khác AC) . tia phân giác Ax của góc A cắt BC ở D. từ D kẻ một đường thẳng song song với AB cắt AC tại F.từ D kẻ đường thẳng song song với AC cắt AB ở E.
a) CM AE=ED=DF=FA
b) từ trung điểm M của cạnh BC kẻ đường thẳng vuông góc với AC tại Pva cắt đường thẳng AB tại Q.CM EF song song với PQ.
c) CM BP=CQ
cho tam giác ABC ( AB khác AC) . tia phân giác Ax của góc A cắt BC ở D. từ D kẻ một đường thẳng song song với AB cắt AC tại F.từ D kẻ đường thẳng song song với AC cắt AB ở E.
a) CM AE=ED=DF=FA
b) từ trung điểm M của cạnh BC kẻ đường thẳng vuông góc với AC tại Pva cắt đường thẳng AB tại Q.CM EF song song với PQ.
c) CM BP=CQ