Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
manh nguyen
Xem chi tiết
shitbo
26 tháng 10 2018 lúc 19:54

c, 2n+7 chia hết cho n+1

=> 2n+7-2(n+1) chia hết cho n+1

=> 5 CHIA HẾT CHO n+1

=> n E { -2;0;4;-6}

Bùi Nguyệt Hà
Xem chi tiết
nguyễn ánh hằng
13 tháng 11 2018 lúc 19:08

1)2n+5-2n-1

=>4 chia hết cho 2n-1

ước của 4 là 1 2 4

2n-1=1=>n=.....

tiếp với 2 và 4 nhé

Nguyễn Anh Thư
Xem chi tiết
Minh Hoàng Nhật
25 tháng 11 2015 lúc 16:09

câu 1:ta có số 975 chia hết cho 65 và lớn nhất 

ta có:975/65=15

lại có thương=số dư suy ra số dư =15

suy ra số cần tìm là 975+15=990

Vậy số cần tìm là 990

câu 2 =4

câu 3 = 3

tick đi mình cho lời giải chi tiết

xinh xinh
Xem chi tiết
Nicky Grimmie
23 tháng 1 2017 lúc 15:41

1+3+3+...+n=aaa

=> n(n-1):2=a.111

=>n(n-1)=a.222=a.3.2.37

=> n(n+1)=a.6.37vì n(n+1) là 2 số tự nhiên liên típ = > a.6 và 37 là 2 số tự nhiên liên tiếp và a.6 chia hết cho 6 =>a.6=36<=>a=6=> n=36

vậy..............

Lê Hải Dương
9 tháng 4 2021 lúc 20:49

?????????????????????????????????????????

Khách vãng lai đã xóa
Han Han
Xem chi tiết
Nguyễn Đăng Khoa
Xem chi tiết
Nguyễn Trần Thiên Lý
6 tháng 11 2016 lúc 22:52

a. n = 0; n = 2

b. n = 0; n = 2

c. n = 2

Nguyễn Nhật Anh
22 tháng 2 2017 lúc 12:14

n + 4 chc n + 1

sr n + 1 + 3 chc n + 1

sr 3 chc n + 1

suy ra n + 1 tuộc Ư[3]

sr n+1= { 1;-1;3;-3 }

n+1=1 sr n=o

n+1= -1sr n= -2

n+1=3 sr n=2

n+1= -3 sr n= -4

Thiên Hoàng
Xem chi tiết
Nguyen Thi Ai Duyen
Xem chi tiết
Quỳnh Huỳnh
1 tháng 8 2015 lúc 10:58

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

Lê Hoài Duyên
13 tháng 10 2015 lúc 20:15

1. n = 301

2.a) n = 99

b) không có

c) n = 774

duy phan
5 tháng 11 2015 lúc 17:55

qua de ma cung phai hoi

 

zZz Hoàng Vân zZz
Xem chi tiết