Cho a,b,c,d thuộc Z thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right)\). CMR: \(a+b+c+d⋮3\)
Cho a, b, c, d thuộc Z thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right).\)Chứng minh a + b+ c+ +d chia hết cho 3
Bài bạn làm rất chuẩn em tham khảo nhé! ( chỉ cần nhấn vào link màu xanh ) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
cho a,b,c,d thuộc Z thỏa mãn a^3+b^3=2(c^3-8d^3). chứng minh rằng a+b+c+d chia hết cho 3
Cho \(a,b,c,d\in Z\) thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right)\) CMR: \(a+b+c+d⋮3\)
\(a^3+b^3=2\left(c^3-8d\right)^3\)
\(a^3+b^3+c^3+d^3=3c^3-15d^3=3\left(c^3-5d^3\right)\)
VP chia hết cho 3 => VT phải chia hết cho 3
\(a^3+b^3+c^3+d^3\) phải chia hết cho 3
\(a^3+b^3+c^3+d^3=\left(a+b+c+d\right)^3-3A\)
A là biểu thức đại số chứa các tích \(\left(ab;ac;ad;bc;bd\right)\)
3A chia hết cho 3
\(\Rightarrow\left(a+b+c+d\right)^3\) chia hết cho 3
\(\Rightarrow\left(a+b+c+d\right)\) chia hết cho 3
\(\Rightarrowđpcm\)
cho a,b,c,d thuộc Z thỏa mãn :
a^3+b^3=2(c^3-8d^3)
Chứng minh a+b+c+d chia hết cho 3
Cho \(a,b,c,d\in Z\) thỏa mãn\(a^3+b^3=2\left(c^3=8d^3\right).\) . Chứng minh rằng a+b+c+d chia hết cho 3
Cho \(a,b,c,d\inℤ\)thỏa mãn:
\(a^3+b^3=2\left(c^3-8d^3\right)\)
CMR: \(a+b+c+d\)chia hết cho 3
cho a,b,c,d thuộc Z thỏa mãn a3+b3=2(c3-8d3). chứng minh a+b+c+d chi hết cho 3
Cho \(a,b,c,d\in Z\) thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right)\) . Chứng minh rằng \(a+b+c+d\)chia hết cho 3
Ta có : \(x+y=\sqrt{\left(x+y\right)^2}\le\frac{\left(x+y\right)^2+1}{2}\)
z = \(\sqrt{z^2}\le\frac{z^2+1}{2}\)
=> x + y + z \(\le\frac{\left(x+y\right)^2+1+z^2+1}{2}=\frac{ }{ }\)
\(x+y=\sqrt{\left(x+y\right)^2}\le\frac{\left(x+y\right)^2+1}{2}\)
\(z=\sqrt{z^2}\le\frac{z^2+1}{2}\)
\(\Rightarrow x+y+z\le\frac{\left(x+y\right)^2+1+z^2+1}{2}=2+xy\)
các bạn viết rõ ràng cho mình hiểu với
Cho các số nguyên a,b, c,d thỏa mãn \(a^3+b^3=2\left(c^3-8d^3\right)\) Chứng minh rằng a+b+c+d chia hết cho 3.
Ta có a3 + b3 = 2(c3 - 8d3)
<=> a3 + b3 = 2c3 - 16d3
<=> a3 + b3 + c3 + d3 = 3(c3 - 5d3) \(⋮3\)(1)
Xét hiệu a3 + b3 + c3 + d3 - (a + b + c + d)
= (a3 - a) + (b3 - b) + (c3 - c) + (d3 - d)
= (a - 1)a(a + 1) + (b - 1)b(b + 1) + (d - 1)d(d + 1) \(⋮3\) (tổng các tích 3 số nguyên liên tiếp)
=> a3 + b3 + c3 + d3 - (a + b + c + d) \(⋮\)3 (2)
Từ (1) và (2) => a + b + c + d \(⋮3\)