tìm tất cả các số tự nhiên m,n sao cho: 2^m + 2015 = \n-2006\ + n-2016
tìm tất cả các số tự nhiên m,n sao cho: 2^m + 2015 = |n-2006|+ n-2016
Tìm tất cả các số tự nhiên n,m sao cho 2^m +2015 = /n -2016 / + n-2016
TH1: \(n-2016\ge0\)\(\Rightarrow n\ge2016\Rightarrow\left|n-2016\right|=n-2016\)
Khi đó, phương trình đã cho trở thành: \(2^m+2015=2\left(n-2016\right)\)(1)
Vì VT chẵn nên VP chẵn. Mà 2015 lẻ nên \(2^m\)phải lẻ\(\Rightarrow m=0\)
Thay m=0 vào (1), ta được: \(1+2015=2\left(n-2016\right)\Rightarrow n-2016=1008\Rightarrow n=3024\)(TM)
TH2: \(n-2016< 0\Rightarrow n< 2016\Rightarrow\left|n-2016\right|=-\left(n-2016\right)\)
Khi đó, phương trình đã cho trở thành: \(2^m+2015=0\Rightarrow2^m=-2015\)(vô lý)
Vậy \(\left(m;n\right)=\left(0;3024\right)\)
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Tìm tất cả các số tự nhiên n,m sao cho 2^m +2015 = /n -2016 / + n-2016
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Tìm tất cả các số tự nhiên m;n sao cho: 2m + 2015 = / n - 2016/ +n - 2016
giả sử /x/ + x
TH1: x>0 => /x/+x=x+x=2x
TH2: x< hoặc =0 => /x/+x=0
=> /x/+x chẵn
=> /n-2016/ + n-2016 chẵn
=> 2^m +2015 chẵn
Mà 2015 lẻ => 2^m lẻ => m=0
thay vào .............
n=3024
m=0
Tìm tất cả các số tự nhiên m,n sao cho: 2m+2015=|n-2016|+2016
Giả sử |x|+x
x>0 => |x|+x=x|x=2xx< hoặc bằng 0 => |x|+x=0=> |x|+x chẵn
=> |n-2016|+2016 chẵn
=> 2m+2015 chẵn
Mà 2015 lẻ => 2m lẻ => m=0
Thay vào ta có:
m=3024
n=0
Tìm Tất Cả các số tự nhiên m,n sao cho : 2^m+2015=ln-2016l+n-2016
tìm tất cả các số tự nhiên m,n sao cho \(P=2^m+2015=|n-2016|+n-2016\)
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
Tìm tất cả số tự nhiên m,n sao cho 2m+2015=/n-2016/+n-2016
Tìm tất cả các số tự nhiên m, n sao cho: \(2^m\)+ 2015 = |n−2016| + n - 2016
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }