\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{90}\)
Tính nhanh
Giúp mình với
Tính
\(1-\frac{1}{90}-\frac{1}{72}-\frac{1}{52}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(1-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=1-\left(\frac{1}{90}+\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
\(=1-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=1-\left(1-\frac{1}{10}\right)\)
\(=1-\frac{9}{10}\)
\(=\frac{1}{10}\)
Tính thuận tiện :
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+....+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\)\(+\frac{1}{110}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...\) \(+\frac{1}{9\cdot10}\)\(+\frac{1}{10\cdot11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\)\(\frac{1}{5}\)\(+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)\(+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
= \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{9x10}+\frac{1}{10x11}\)
= \(\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{10-9}{9x10}+\frac{11-10}{10x11}\)
= \(\frac{2}{1x2}-\frac{1}{1x2}+\frac{3}{2x3}-\frac{2}{2x3}+...+\frac{10}{9x10}-\frac{9}{9x10}+\frac{11}{10x11}-\frac{10}{10x11}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
= \(1-\frac{1}{11}=\frac{10}{11}\)
Tính nhanh:
A=\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
B=\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}\)
A = \(\frac{-79}{90}\)
B = \(\frac{8}{9}\)
Tính tổng 10 phân số đầu tiên của dãy sau :
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}=?\)
Tính nhanh lên mình đang cần gấp
\(=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{11.12}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}\)
\(=\frac{5}{12}\)
bn sẽ tinh theo kieeuranhaan 2 nha xin lỗi mik làm bi này rùi nhưng mik quên mik có sacks xem lại
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{11\cdot12}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}\)\(=\frac{6}{12}-\frac{1}{12}=\frac{5}{12}\)
Tính
\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\right)=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\left(\frac{9}{9}-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=\frac{1}{90}-\frac{80}{90}=-\frac{79}{90}\)
Tính nhanh :
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}=\)
1/2+1/6+1/12+...+1/110
=1/1.2+1/2.3+1/3.4+...+1/10.11
=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11
=1-1/11=10/11
Thực hiện phép tính:
\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(A=\frac{9}{10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{9}{10}-\left(1-\frac{1}{10}\right)\)
\(A=\frac{9}{10}-\frac{9}{10}=0\)
\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(\Leftrightarrow A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(\Leftrightarrow A=\frac{9}{10}-\frac{9}{10}\)
\(\Leftrightarrow A=0\)
1) Tính bằng cách hợp lý nhất :
a) \(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
a) 1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= 1/10.9 - 1/9.8 - 1/8.7 - 1/7.6 - 1/6.5 - 1/5.4 - 1/4.3 - 1/3.2 - 1/2.1
= 1/10 - 1
= 0,1 - 1
= -0,9
Tính giá trị của :
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{90}\)
\(A=3-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)
\(A=3-\left(1-\frac{1}{10}\right)\)
\(A=3-\frac{9}{10}\)
\(A=\frac{21}{10}\)