Tìm n thuộc N* để n+3;n+13;n+17 đều là các SNT(giúp mình với mình cần gấp)
1. 3/n-5 thuộc N<=> n-5 lớn hơn 0<=>n lớn hơn 5
2. 3/n-5 thuộc Z<=> n-5 khác 0<=> n khác 5
3. 9/2n-3 thuộc Z<=> 2n-3 khác 0<=> 2n khác 3<=> n thuộc Z
cho A= 3/ n-2 ; n thuộc Z. Tìm n để A thuộc Z
Cho b= n/n+1 ; n thuộc Z. Tìm n để B thuộc Z
A nguyên <=> 3 ⋮ n - 2
=> n - 2 thuộc Ư(3)
=> n - 2 thuộc {-1;1;-3;3}
=> n thuộc {1;3;-1;5}
B nguyên <=> n ⋮ n + 1
=> n + 1 - 1 ⋮ n + 1
=> 1 ⋮ n + 1
=> như a
ĐK : \(n\ne2\)
\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
ĐK : \(n\ne-1\)
\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 1 | 1 | -1 |
n | 0 | -2 |
Tìm n thuộc N để 2.n+1 chia hết cho n+3
Tìm n thuộc N để 19.n+ 7 / 7.n+11 là số tự nhiên
câu a) 2n+1 chia hết cho 3
--> 2(n+3)-5 chia hết cho 3
mà 2(n+3) chia hết cho n +3
-->-5 chia hết cho n+3
-->n+3 C Ư(-5)={-1;-5;1;5}
-->n={-4;-8;-2;2}
______________________
li-ke cho mk nhé bn
a) 2n+1 chia hết cho n+3
=>2n+6-6+1 chia hết cho n+3
=>2.(n+3)-5 chia hết cho n+3
=>5 chia hết cho n+3
=>n+3=Ư(5)=(1,5)
=>n=(-2,2)
mà n thuộc N
=>n=2
Tìm n để A = n+1/n-3 thuộc Z ( n thuộc Z, n khác 3)
Ta có: n+1=n-3+4
Vì:n-3 chia hết cho n-3
=> 4 chia hết cho n-3
<=> n-3 thuộc ước của 4=(1;-1;2;-2;4;-4)
=> n thuộc (4;2;5;1;7;-1)
Cho biểu thức A= n+5 trên n+3 với n thuộc z
a)tìm n để A bằng 1phần2
b)tìm n thuộc z để A nhận giá trị nguyên
c)tìm n thuộc z để A rút gọn được
e)tìm n để A là phân số tối giản
\(B.\) Để n thuộc z để A nhận giá trị nguyên thì
\(n+5\)\(⋮n+3\)
\(\Rightarrow\)\(\left(n+3\right)+2⋮n+3\)
\(\Rightarrow\)\(n+3\inƯ_{\left(2\right)}\)\(=\left\{\pm1;\pm2\right\}\)
\(n+3=1\Rightarrow x=1-3=-2\)\(\in Z\)\(n+3=-1\Rightarrow x=\left(-1\right)-3=-4\)\(\in Z\)\(n+3=2\Rightarrow x=2-3=-1\in Z\)\(n+3=-2\Rightarrow x=\left(-2\right)-3=-5\in Z\)Vậy x \(\in\){ -2 ; -4 ; -1 ; -5}.
1, Tìm n thuộc N để 7n+3 và 2n+4 nguyên tố chùng nhau
2, Tìm n thuộc N để 4n+3 và 2n+3 nguyên tố chùng nhau
B = n+4 phần n+1 (n thuộc Z)
Tìm n thuộc Z để B là phân số. Tìm phân số B khi n=0: -3: 3. Với n giá trị (a) hãy tìm để B nhận giá trị nguyên.
\(A=\frac{2n-5}{n+3}\) (n THUỘC Z)
a,Tìm n để A là phân số
b,Tìm n thuộc Z để A có giá trị là số nguyên
c,Tìm n thuộc Z để A rút gọn được
d,Tìm n thuộc Z để A là phân số tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
Cho B=(4n+1)/2n+3 (n thuộc Z)
1, tìm n thuộc Z để B thuộc Z
2, tìm n để B tối giản
3, tìm min , max của B