Tìm các số a,b,c
3a = 7b và \(a^2\)-\(b^2\)= 160
Tìm các số a , b , c nếu : 3a = 7b và a2 - b2 = 160
Có: 3a=7b
=> \(\frac{a}{7}=\frac{b}{3}\Rightarrow\)\(\frac{a^2}{49}=\frac{b^2}{9}\)
Áp dụng tính chất của dãy tie số bằng nhau ta có:
\(\frac{a^2}{49}=\frac{b^2}{9}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)
=>\(\frac{a^2}{49}=4\Rightarrow a=14\)
\(\frac{b^2}{9}=4\Rightarrow b=6\)
3a = 7b và a2 - b2 = 160
Ta có: 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\) => \(\frac{a^2}{49}=\frac{b^2}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{49}=\frac{b^2}{9}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)
=> \(\hept{\begin{cases}\frac{a^2}{49}=4\\\frac{b^2}{9}=4\end{cases}}\) => \(\hept{\begin{cases}a^2=196\\b^2=36\end{cases}}\) => \(\hept{\begin{cases}a=\pm14\\b=\pm6\end{cases}}\)
Vậy ...
Ta có : \(3a=7b\)
\(\Rightarrow\frac{a}{7}=\frac{b}{3}\)
Áp dụng TC của dãy tỉ số bằng nhau ta có :
\(\frac{a}{7}=\frac{b}{3}=\frac{a^2}{49}=\frac{b^2}{9}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)
\(\Rightarrow\hept{\begin{cases}a=4.7=28\\b=4.3=12\end{cases}}\)
\(3a=7b\)
\(\Leftrightarrow a=\frac{7b}{3}\)
\(\Rightarrow a^2-b^2=160\)
\(\Rightarrow(\frac{7b}{3})^2-b^2=160\)
\(\Rightarrow14b^2-9b^2=1440\)
\(\Rightarrow5b^2=1440\)
\(\Rightarrow b^2=288\)
\(\Rightarrow b=12\sqrt{2}\)
\(\Rightarrow a=28\sqrt{2}\)
Tìm các số a, b, c biết rằng: a) a/ 3 = b/ 2 , b/ 7 = c /5 và 3a – 7b + 5c = 30 b) 7a = 9b = 21c và a – b + c = – 15
a, Ta có: \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{15}=\frac{3a-7b+5c}{63-98+75}=\frac{30}{40}=\frac{3}{4}\)
\(a=\frac{63}{4};b=\frac{42}{4};c=\frac{45}{4}\)
b, Ta có : \(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=-\frac{15}{5}=-3\Rightarrow a=-27;b=-21;c=-9\)
Tìm các số a, b, c biết rằng: a) a 3 = b 2 , b 7 = c 5 và 3a – 7b + 5c = 30 b) 7a = 9b = 21c và a – b + c = – 15
a/ Tìm x, y, z biết 3x/8=3y/64=3z/216 và 2x^2+2y^2-z^2=1
b/ CMR:
Nếu a/b=c/d thì 7a^2+5ac/7a^2-5ac=7b^2+5bd/7b^2-5bd (Giả sử các tỉ số đều có nghĩa)
3a+7b và a'- b'=160
Cho a,b,c laf các số nguyên biết a^2+160=b^2+5;a^2+320=c^2+5.
Tìm a.
a)Tìm các số nguyên x sao cho 4x-3 chia hết cho x-2
b) Tìm số tự nhiên a và b để thỏa mãn 5a + 7b/ 6a +5b = 29/28
a)4x-3 chia hết cho x-2
4x-8+5 chia hết cho x-2
(4x-8)+5 chia hết cho x-2
4(x-2)+5 chia hết cho x-2 <=> 5 chia hết cho x-2 [vì 4(x-2) luôn chia hết cho x-2]
x-2 E {1;-1;5;-5}
Nếu x-2=1 Nếu x-2=-1 Nếu x-2=5 Nếu x-2=-5
x=1+2=3 x=-1+2=1 x=5+2=7 x=-5+2=-3
Tìm các số a,b,c nếu :
a ) a - 2b + c = 46 và \(\frac{a}{7}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
b ) 5a = 8b = 3c và a - 2b + c = 34
c ) 3a = 7b và a2 - b2 = 160
d ) 15a = 10b = 6c và abc = - 1920
e ) a2 + 3b2 - 2c2 = - 16 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
g ) a3 + b3 + c3 = 792 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
Cứ làm từng câu , miễn sao hết là được !!!
a)Vì \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\left(1\right)\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{a}{35}=\frac{2b}{60}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)
\(\Rightarrow\begin{cases}\frac{a}{35}=2\\\frac{b}{30}=2\\\frac{c}{48}=2\end{cases}\)\(\Rightarrow\begin{cases}a=70\\b=60\\c=96\end{cases}\)
Vậy a=70;b=60;c=96