1 Tính nhanh
a) S= 1-2+3-4+5-6+...+2001-2002+2003
b) \(A=\frac{12}{3.5}+\frac{12}{5.7}+...+\frac{12}{2013.2015}\)
Tính nhanh
a) S= 1-2+3-4+5-6+...+2001-2002+2003
b) \(A=\frac{12}{3.5}+\frac{12}{5.7}+...+\frac{12}{2013.2015}\)
\(A=\frac{12}{3.5}+\frac{12}{5.7}+...+\frac{12}{2013.2015}\)
\(2A=\frac{24}{3.5}+\frac{24}{5.7}+...+\frac{24}{2013.2015}\)
\(2A=\frac{24}{3}-\frac{24}{5}+\frac{24}{5}-\frac{24}{7}+...+\frac{24}{2013}-\frac{24}{2015}\)
\(2A=8-\frac{24}{2015}\)
\(2A=\frac{8}{1}-\frac{24}{2015}\)
\(2A=\frac{16120}{2015}-\frac{24}{2015}\)
\(2A=\frac{16096}{2015}\)
\(=>A=\frac{16096}{2015}:2\)
\(=>A=\frac{16096}{4030}\)
tính
A =\(\frac{11}{1.3}\)+ \(\frac{47}{3.5}\)+ \(\frac{107}{5.7}\)+ \(\frac{191}{7.9}\)+...+ \(\frac{971}{17.19}\)
B = \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)- \(\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3-5^9.7^3.2^3}\)
C = 1.3+3.5+5.7+...+ (2n-1)(2n+1)
Giúp mình vs nhanh nhanh nha các bạn
B1 : tính
A= 1 + 2 +3 +4+5+...+99+100
B =\(\frac{1}{2}\)+ \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
B2 : Tính
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
B3 :So sánh
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)với 1
B4: Tính
\(B=\frac{1+2+2^2+2^3+...+2^{2015}}{1-2^{2016}}\)
Mấy bạn làm được bài nào thì chỉ cho mình zới
Mk giải ko chép lại đề nhá!
Bài 3:
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}\)\(-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{50}{50}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Vậy: M < 1
Bài 2:
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\frac{1}{1}-\frac{1}{2015}\)
\(=\frac{2015}{2015}-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
B1
A co (100-1)+1=100 so hang
A=(100+1).100 :2=5050
bài 1:tính
a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{27.30}\)
b)\(\frac{12}{3.5}+\frac{12}{5.7}+\frac{12}{7.9}+...+\frac{12}{97.90}\)
nhanh lên nha gấp lắm rồi ai làm đúng và nhanh nhất tui tick cho
a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)
\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)
\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)
Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)
\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)
\(2A=\frac{12}{3}-\frac{12}{99}\)
\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)
1.5/1-5/4+5/4-5/7+5/7-5/9 +....+5/27-5/30
=5/1-5/30
=145/30=29/6.
1) Tính:
\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+........+\frac{2}{97.99}\)
\(B=\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.......\frac{1}{97.99}\)
\(D=\left(\frac{\frac{12}{1}-\frac{12}{5}-\frac{12}{487}}{\frac{4}{1}-\frac{4}{5}-\frac{4}{487}}\right):\left(\frac{\frac{5}{1}+\frac{5}{17}+\frac{5}{37}}{\frac{6}{1}+\frac{6}{17}+\frac{6}{37}}\right).\frac{505}{1818}\)
2) So sánh:
a)\(\frac{2008}{2009}+\frac{2009}{2010}\) và \(\frac{2008+2009}{2009+2010}\)
b) \(\frac{12}{23}\) và \(\frac{1212}{2323}\)
Giúp mình nha. Mai mình kiểm tra 45'.
B = \(\frac{2^3.5.7.5^2.7^3}{\left(2.5.7^2\right)^2}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=\frac{2.5.1}{1.1.1}=10\)
C = \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{1}{2}\left(\frac{33}{99}-\frac{1}{99}\right)=\frac{1}{2}.\frac{32}{99}=\frac{16}{99}\)
1) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
TÍNH:[/:phần]
a)1/2 - 1/3 + 1/4 -1/5 + 1/6 - 1/7 +1/5 - 1/4 + 1/3 - 1/2
b)1/2 + 1/6 + 1/12 +1/20+ 1/30
c)\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+...+\(\frac{2}{47.49}\)
d)\(\frac{4}{1.5}\)+\(\frac{4}{5.9}\)+...+\(\frac{4}{41.45}\)
1) tính \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}\)
2) tính \(\frac{2^{12}.3^5-4^6.9^2}{12^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.7^4}{\left(5^3.7\right)^3.14^3}\)
Đi học về rồi giải cho , giờ đi học đã
Trong câu hỏi tương tự mà có mới hay !
ko biết lướt hộ cái nhức cả đầu -_-
Tính tổng Q:
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{2013.2015}\)
Q = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
Q = \(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{2013.2015}\right)\)
Q = \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2015}\right)\)
Q = \(\frac{1}{2}.\frac{2012}{6045}=\frac{1002}{6045}\)
\(Q=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\)
\(\Rightarrow Q.2=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\right)\)
\(\Rightarrow Q.2=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2013.2015}\)
\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{2015}\)
\(\Rightarrow Q.2=\frac{2012}{6045}\)
\(\Rightarrow Q=\frac{2012}{6045}.\frac{1}{2}=\frac{1006}{6045}\)
Mk tinh nhẩm, nên ko bt kết quả có đúng ko
nên bn thử tính lại kết quả nha!!!
Chúc bn hok tốt!!!
Tính: \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\)
có công thư rồi mà bài này dễ đợi mk 3' nhé mk giải cho
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2012}{6045}=\frac{1006}{6045}\)
lm tắt cu~g chả bt đúng ko ^^, thông cảm
\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2015}\right)\)
\(\frac{1}{2}.\frac{2012}{6045}\)
=\(\frac{1006}{6045}\)
ok bạn nhé