Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NTHT
Xem chi tiết
Hàn Minh Đức 123
Xem chi tiết
Ngô Thị Mỹ Duyên
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
27 tháng 6 2016 lúc 19:01

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2018 lúc 11:33

Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.

Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k

37h + 1 = 39k + 14

37h – 37k = 2k + 13

37(h – k) = 2k + 13

Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ

Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1

a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất

Do đó h – k nhỏ nhất nên h – k = 1

Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482

Vậy a = 482

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 2 2018 lúc 13:46

Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.

Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k

37h + 1 = 39k + 14

37h – 37k = 2k + 13

37(h – k) = 2k + 13

Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ

Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1

a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất

Do đó h – k nhỏ nhất nên h – k = 1

Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482

Vậy a = 482

Nguyễn Công Tỉnh
Xem chi tiết
Nguyễn Tuấn Tài
14 tháng 9 2015 lúc 19:21

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

vậy k =482

Le Thi Khanh Huyen
14 tháng 9 2015 lúc 19:11

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

Huỳnh Minh Nghi
Xem chi tiết
Yuzuri Yukari
23 tháng 7 2016 lúc 10:30

Vào đây cho nhanh nha bn 

http://olm.vn/hoi-dap/question/197955.html

 photo _r06_zpsd0152c38.gif

Huỳnh Minh Nghi
Xem chi tiết
Lê Vũ Khánh Thảo
Xem chi tiết
Đinh Thùy Linh
29 tháng 6 2016 lúc 18:26

Số tự nhiên a chia 37 dư 1 ; chia 39 dư 14 thì: a - 1 chia hết cho 37 và a - 14 chia hết cho 39. Khi đó:

a + 961 = (a - 1) + 37*26 chia hết cho 37a + 961 = (a - 14) + 39*25 chia hết cho 39Vậy a + 961 chia hết cho 37 và 39 và có dạng a + 961 = 37*39k = 1443k => a nhỏ nhất khi k = 1 và => a = 1443 - 961 = 482.

ĐS: a = 482.