Cho tam giác ABC có góc A = 80 độ, góc C = 30 độ kẻ phân giác BD, kẻ DEvuông góc với BC. Tính góc ADB, góc BDE, góc EDC.
Cho tam giác ABC có góc A = 80 độ, góc C = 30 độ kẻ phân giác BD, kẻ DEvuông góc với BC. Tính góc ADB, góc BDE, góc EDC.
Cho tam giác ABC có B = 70 độ, C = 30 độ kẻ AH vuông góc với BC ( H thuộc BC )
a) tính góc CAB và góc HAC
b) kẻ phân giác góc A cắt BC tại D. Tính góc ADC và góc ADB
cho tam giác ABC có góc A > 90 độ và BD là đường phân giác. Kẻ AH vuông góc BC tại H biết góc AHD=45 độ. Tính góc ADB
^AHC = 900 và ^AHD = 450 suy ra HD là phân giác ngoại tại đỉnh H của \(\Delta\)ABH
Kết hợp với BD là đường phân giác trong tại đỉnh B suy ra AD là phân giác của ^HAx (2 đường phân giác ngoài và một đường phân giác trong đồng quy)
Ta có: ^HAx = 900 + ^ABH (t/c góc ngoài)
=> \(2\widehat{CAx}=90^0+2\widehat{ABD}\)
=> ^CAx = 450 + ^ABD
Mà ^CAx = ^ADB + ^ABD (t/c góc ngoài) nên suy ra ^ADB = 450
Vậy \(\widehat{ADB}=45^0\)
Cho tam giác abc có góc bac bằng 90 độ góc abc bằng 50 độ. Bd là phân giác góc abc. Trên cạnh bc lấy e sao cho be bằng ba A, tímh số đo góc c B, chứng minh tam giác bda bằng tam giác bde C, vẽ đường thẳng d vuông góc với ab tại b. Qua a kẻ đường song song bd và cắt d tại m chứng minh am bằng bd
bạn viêt khó hiểu quá, bạn viết lại cho đúng nha
Bài 1: Cho tam giác MNP vuông tại M. Kẻ MH vuông góc với NP ( H thuộc NP )
a) Tìm các cặp góc phụ nhau trên hình
b) Tìm các cặp góc nhọn bằng nhau trên hình
Bài 2: Cho tam giác ABC có góc A = 60 độ , góc C = 50 độ. Tia phân giác của góc B cắt AC tại D. Tính góc ADB, CDB
Bài 3: Cho tam giác ABC, điểm M nằm trong tam giác đó. Tia BM cắt AC ở K
a) So sánh góc AMK và góc ABK
b) So sánh góc AMC và góc ABC
Bài 4: Cho tam giác ABC có góc A = 100 độ, góc B - góc C = 20 độ. Tính góc B, góc C
Bài 5: Cho tam giác ABC có góc B = 70 độ, góc C = 30 độ. Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC ( H thuộc BC )
a) Tính góc BAC
b) Tính góc ADH
c) Tính góc HAD
cho tam giác ABC góc B=70 độ C=30 độ . KẺ đường cao AH (AH vuông góc BC . H thuộc BC )
a Tính góc HAB ; HAB
b kẻ phân giác của góc BAC cắt BC ở D . Tính góc ADC và góc ADB
a. Trong tam giác ABH có
Góc B +góc A+góc H=180 độ
=> Góc HAB=1800-700 -900
=> Góc HAB=200
tương tự trong tam giác HAC có
Góc HAC=180 -90-30=600
b. Vì AD là phân giác => A1=A2=(180-70-30):2=40
=> ADC=180-40-30=110
=>ADB=180-70-40=70
Tam giác ABC, góc A = 90 độ, góc B = 60 độ, AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC
a) Chứng minh góc BDA= góc BDE
b) Tam giác ABE là tam giác gì? Vì sao?
c) Tính BC
d) Tính BD khi DE=3cm
Cho tam giác ABC vuông tại A góc B = 60 độ kể BD là p/g của góc ABC tính góc C , góc ADB
Chứng tỏ tam giác BCD là tam giác cân
Kẻ BE vuông góc với BC, DE cắt AB tại F chứng tỏ góc BFE = góc C
-TÍNH GÓC C:
Xét ΔABC có ˆA+ˆB+ˆC=180°
Do đó: góc C = 180°−ˆA−ˆB = 180-60-90 = 30độ (1)
-TÍNH GÓC ADB:
có: BD là tia phân giác góc ABC
Nên: góc ABD= góc CBD=1/2 góc ABC=1/2 . 60độ =30 độ (2)
⇒góc ABD = 60độ
Xét ΔABD có: gócA+ˆB+ˆD=180độ
Do đó:góc BDA=180 - A- ABD=180°−30°−90°=60°.
-CM ΔBDC cân:
Từ (2) ta có: góc DBC =30độ
Từ (1) ta có:góc ACB=30 độ
Từ (1) và (2) ta có :⇒ΔBCD cân tại D(ĐPCM)
Cho tam giác ABC có góc B = 80 độ , góc C = 30 độ . Tia phân giác của góc A cắt BC ở D . Tính góc ADC , góc ADB ( vẽ hình nửa nha các bạn )
Xét tam giác ABC có:
góc A+góc B+góc C=180 độ
=>góc A=180 độ -góc B-góc C=180 độ-80 độ-30 độ=100 độ -30 độ=70 độ
Vì AD là tia phân giác của góc A
=>góc BAD=góc CAD=gócA/2=70 độ/2=35 độ
Xét tam giác ABD có:
góc ABD+góc BAD+góc ADB=180 độ
=>góc ADB=180 độ -góc B-góc BAD =180 độ-80 độ-35 độ=100 độ -35 độ=65 độ
Xét tam giác ACD có:
góc ACD+góc CAD+góc ADC=180 độ
=>góc ADC=180 độ -góc C-góc CAD=180 độ-30 độ-35 độ=150 độ -35 độ=115 độ
Vậy góc ADB=65 độ
góc ADC=115 độ
ta có hình vẽ
A+B+C=180 độ
=> A=180-80=30=70 độ
vì AD là tia phân giác của A
=>ADC=ADB=\(\frac{1}{2}\)A
=>ADC=ADB=70.1/2=35 ĐỘ