Tính nhanh :
B=3/7x 2010+6/7x 90- 1/2/7x20 -3/6/7
Luy ý : a/b/c là hỗn số
VD: 1/2/3
tính nhanh :
b=3/7x2010+6/7x90-1/2/7x20-3/6/7
luy ý :1/2/7 và 3/6/7 là hỗn số
1)
a) chúng minh A= 2^1 + 2^2 + 2^3 + ... + 2^2010 chia hết cho 3 và 7
b) chúng minh B=3^1 + 3^2 + 3^3 + ...+3^2010 chia hết cho 4 và 13
c) chứng minh C=5^1 + 5^2 + 5^3 + ....+ 5^2010 chia hết cho 6 và 12
Lưu ý : Dấu ^ biểu diễn số đứng liền sau nó là số mũ . VD : 2^2 = 2 mũ 2
2)
a) A=2^0 + 2^1 + 2^2 + 2^3 + ... + 2^2010 và B = 2^2011-1
b) A=2009.2011 và B=2010^2
c) A=10^30 và B=2^100
d) A=333^444 và B= 444^333
1)
a) A = 21 + 22 + … + 22010
= (21 + 22) + (23 + 24) + … + (22009 + 22010)
= 2(1 + 2) + 23(1 + 2) + … + 22009(1 + 2)
= 2.3 + 23.3 + … + 22009.3
Vì 3 chia hết cho 3 nên A chia hết cho 3.
A = 21 + 22 + … + 22010
= (21 + 22 + 23) + (24 + 25 + 26) + … + (22008 + 22009 + 22010)
= 2(1 + 2 + 22) + 24(1 + 2 + 22) + … + 22008(1 + 2 + 22)
= 2.7 + 24.7 + … + 22008.7
Vì 7 chia hết cho 7 nên A chia hết cho 7.
b) B = 31 + 32 + … + 32010
= (31 + 32 )+ (33 + 34) + (35 + 36) + … + (32009 + 32010)
= 3(1 + 3) + 33(1 + 3) + … + 32009(1 + 3)
= 3.4+ 33.4 + … + 32009.4
Vì 4 chia hết cho 4 nên B chia hết cho 4.
B = 31 + 32 + … + 32010
= (31 + 32 + 33) + (34 + 35 + 36) + … + (32008 + 32009 + 32010)
= 3(1 + 3 + 32) + 34(1 + 3 + 32) + … + 32008(1 + 3 + 32)
= 3.13 + 34.13 + … + 32008.13
Vì 13 chia hết cho 13 nên B chia hết cho 13.
c) C = 51 + 52 + … + 52010
= (51 + 52 +53 + 54) + … + (52007 + 52008 + 52009 + 52010)
= 5(1 + 5 + 52 + 53) + … + 52007(1 + 5 + 52 + 53)
= 5.156 + … + 52007.156
Vì 156 chia hết cho 6, 12 nên C chia hết cho 6 và 12.
2)
a) Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1
Vậy A = B ( vì đều bằng 22011 – 1 )
b) Ta có: A = 2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009
B = 20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010
Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.
c) Ta có: A = 1030 = 103.10 = (103)10 = 10010
B = 2100 = 210.10 = (210)10 = 102410
Vì 10010 < 102410 nên A < B.
d) Ta có: A = 333444 = 3334.111 = (3334)111
B = 444333 = 4443.111 = (4443)111
Ta so sánh 3334 và 4443
3334 = (3.111)4 = 34.1114 = 81.111.1113
4443 = (4.111)3 = 43.1113 = 64.1113
Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.
2)a) Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1
Vậy A = B ( vì đều bằng 22011 – 1 )
b) Ta có: A = 2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009
B = 20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010
Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.
c) Ta có: A = 1030 = 103.10 = (103)10 = 10010
B = 2100 = 210.10 = (210)10 = 102410
Vì 10010 < 102410 nên A < B.
d) Ta có: A = 333444 = 3334.111 = (3334)111
B = 444333 = 4443.111 = (4443)111
Ta so sánh 3334 và 4443
3334 = (3.111)4 = 34.1114 = 81.111.1113
4443 = (4.111)3 = 43.1113 = 64.1113
Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.
1)
a) chúng minh A= 2^1 + 2^2 + 2^3 + ... + 2^2010 chia hết cho 3 và 7
b) chúng minh B=3^1 + 3^2 + 3^3 + ...+3^2010 chia hết cho 4 và 13
c) chứng minh C=5^1 + 5^2 + 5^3 + ....+ 5^2010 chia hết cho 6 và 12
Lưu ý : Dấu ^ biểu diễn số đứng liền sau nó là số mũ . VD : 2^2 = 2 mũ 2
2)
a) A=2^0 + 2^1 + 2^2 + 2^3 + ... + 2^2010 và B = 2^2011-1
b) A=2009.2011 và B=2010^2
c) A=10^30 và B=2^100
d) A=333^444 và B= 444^333
Híc híc mình trả lời rồi mà nó đi đâu mất rồi!
Thôi trả lời lại vậy;
Bài 1:
a)
* A = 21 + 22 + 23 + ... + 22010
A = (21 + 22) +(23 + 24) + ... + (22009 + 22010)
A = 21. (1 + 2) + 23. (1 + 2) + ... + 22009. ( 1 + 2)
A = 21. 3 + 23. 3 + ... + 22009. 3
A = 3. (21 + 23 + ... + 22009)
Vì 3 \(⋮\)3 nên 3. (21 + 23 + ... + 22009) \(⋮\)3
=> A \(⋮\)3
Vậy A \(⋮\)3.
* A = 21 + 22 + 23 + ... + 22010
A = (21 + 22 + 23) + (24 + 25 + 26) + ... (22008 + 22009 + 22010)
A = 21. (1 + 2 + 22) + 24. (1 + 2 + 22) + ... + 22008. ( 1 + 2 + 22)
A = 21. 7 + 24. 7 + ... + 22008. 7
A = 7. (21 + 24 + ... + 22008)
Vì 7 \(⋮\)7 nên 7. (21 + 24 + ... + 22008) \(⋮\)7
=> A \(⋮\)7
Vậy A \(⋮\)7
b) B = 31 + 32 + 33 + ... + 32010
B = (31 + 32) + ( 33 + 34) + ... + ( 32009 + 32010)
B = 31. (1+ 3) + 33. (1 + 3) + ... + 32009. ( 1 + 3)
B = 31. 4 + 33.4 + ... + 32009.4
B = 4. (31 + 33 + ... + 32009)
Vì 4 \(⋮\)4 nên 4. (31 + 33 + ... + 32009) \(⋮\)4
=> B \(⋮\)4
Vậy B \(⋮\)4
...... Mấy phần còn lại bạn làm tương tự nhé!
Còn bài 2 để mình làm sau tại vì mình mỏi tay quá!
Chúc bạn học tốt!
Tìm x:
a . 12(x-5)=7x-5
b. 5+2!3x-1/2!=6
c. Tìm x thuộc Z
(2x-3)^2010=(2x-3)2012
Dấu ! là dấu giá trị tuyệt đối nha !
Ai nhanh mình tick
a) \(12\left(x-5\right)=7x-5\)
\(12x-60=7x-5\)
\(12x-7x=60-5\)
\(5x=55\)
\(x=11\)
a, 12(x-5)=7x-5
suy ra 12x-60-7x+5=0
suy ra 5x-55=0
suy ra x=55/5=11
vay x=11
b, ta có 5+2!3x-1/2!=6
suy ra 2!3x-1/2!=6-5=1
suy ra !3x-1/2!=1/2
xet th1: 3x-1/2=1/2
suy ra x=1/3
xet th2 3x-1/2=-1/2
suy ra x=0
vạy x=0 hoac x=1/3
c, (2x-3)^2010=(2x-3)^2012
xet th1 2x-3=1 suy ra x=2
xet th2 2x-*3=0 suy ra x=3/2
vạy x=2 hoac x=3/2
xác định hệ số a,b,c,d
4x^3+7x^2+7x-6=(ax+b)(x^2+x+1)+c
Ta có :
\(4x^3+7x^2+7x-6=\left(ax+b\right)\left(x^2+x+1\right)+c\)
\(\Leftrightarrow4x^3+7x^2+7x-6=ax^3+ax^2+ax+bx^2+bx+b+c\)
\(\Leftrightarrow4x^3+7x^2+7x-6=ax^3+\left(a+b\right)x^2+\left(a+b\right)x+\left(b+c\right)\)
( Phương pháp đồng nhất hệ số )
\(\Rightarrow\hept{\begin{cases}a=4\\a+b=7\\b+c=-6\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=4\\b=3\\c=-9\end{cases}}\)
Vậy ...
bài 1 tính nhanh
a 6/5x1/7+3/5x6/7 = ?
b 6/7x 3 2/7 x3
a, 24/35
b, 13/7
k cho mih
Tìm x:
1) 3/7x - 2/5x = -17/35
2) (3/4x - 9/16) (1/3 +-3/5 : x) = 0
3) 7/35 : (x- 1/3) = -2/25
4) ( x - 3/5) : -1/3 = 2/5
5) 3/7x - 2/3x = 10/21
6) ( x-1) (x+2) < 0
7) | x + 2| + |2x+1| =4x
8) | x-1 | + |x-2| = 3K
( mấy cái / là phần nhé phần giữa phân số ý VD như \(\frac{1}{2}\)thì mình viết là 1/2) giải nhanh giùm mình nhé mình cần gấp, cảm ơn các bạn!!!
Bài 1 so sánh P và Q
P=2010/2011+2011/2012+2012/2013
Q=2010+2011+2012/2011+2012+2013
Bài 2 :a [7x-11]=2 mũ 5 nhân 3 mũ 2 +200
b hỗn số 3 1/2 x + hỗn số 16 3/4 = -13,25
bài 3; chứng minh ababab chia hết cho 3
giup mình nha kich cho
nhanh len
Phân tích đa thức thành nhân tử (bậc cao)
a) x^3-4x^2+x-6 (gợi ý có 1 nghiệm=2)
b) x^3+7x^2+14x+8 (gợi ý có 1 nghiệm=-1)
Lời giải:
a. $x^3-4x^2+x+6=(x^3-2x^2)-(2x^2-4x)-(3x-6)$
$=x^2(x-2)-2x(x-2)-3(x-2)=(x-2)(x^2-2x-3)$
$=(x-2)[(x^2+x)-(3x+3)]=(x-2)[x(x+1)-3(x+1)]$
$=(x-2)(x+1)(x-3)$
-------------------
b.
$x^3+7x^2+14x+8=(x^3+x^2)+(6x^2+6x)+(8x+8)$
$=x^2(x+1)+6x(x+1)+8(x+1)=(x+1)(x^2+6x+8)$
$=(x+1)[(x^2+2x)+(4x+8)]=(x+1)[x(x+2)+4(x+2)]$
$=(x+1)(x+2)(x+4)$