Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen van anh
Xem chi tiết
Nguyễn Phạm Minh Hiếu
Xem chi tiết
Trần Đức Thành
Xem chi tiết
Nguyễn Phương Tuyết Linh
11 tháng 8 2017 lúc 6:32

a) đe 7/n-3 là phân số tối giản.

\(\Leftrightarrow\)U(7)= { 1;7}

\(\Leftrightarrow\)n - 3 = 7 \(\Leftrightarrow\)n = 7+ 3 = 10

\(\Leftrightarrow\)n - 3 = 1 \(\Leftrightarrow\)n = 1 + 3 = 4

Lê Hữu Trường Phước
Xem chi tiết
Nguyễn Ngọc Quý
3 tháng 8 2015 lúc 8:13

2n = 16

=> n = 16 : 2

=> n= 8

4n = 64

=> n = 64 : 4

=> n= 16

15n = 225

=> n = 225 : 15

=> n = 15

Nguyễn Demon
Xem chi tiết
Đặng Tú Phương
3 tháng 2 2019 lúc 20:44

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

Nguyễn Huy Tú
13 tháng 1 2021 lúc 11:59

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2
Khách vãng lai đã xóa
Truong Dinh Xuan
Xem chi tiết
I lay my love on you
Xem chi tiết
Kutevippro
Xem chi tiết
Linh Hồ
Xem chi tiết
Akai Haruma
2 tháng 10 2019 lúc 23:23

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

Akai Haruma
17 tháng 9 2019 lúc 13:59

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

Akai Haruma
2 tháng 10 2019 lúc 23:25

Linh Hồ: Bạn lưu ý lần sau gõ đề bài đầy đủ dấu và công thức toán!