Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Thư Nguyễn
Xem chi tiết
Trịnh Tiến Đức
2 tháng 10 2015 lúc 21:16

3n+2-2n+2+3n-2n

= ( 3n+2+3n)-(2n+2+2n)

= 3n(32+1)-2n(22+1)

= 3n.10-2n-1.10=10(3n-2n-1) chia het cho 10

b) 7n+4-7n=7n(74-1)=7n.2400

Do 2400 chia hết cho 30=>7n.2400 chia hết cho 30

Vậy 7n+4-7n chia hết cho 30 với mọi n thộc N

c) 62n+3n+2+3n=22n.3n+3n(32+1)

=22n.32n+3n.11 chia het cho 11

đ) câu hỏi tương tự nhé

l-i-k-e mình nhé

Từ Quỳnh Hương
Xem chi tiết
thành piccolo
Xem chi tiết
Lê Ngọc Anh
Xem chi tiết
Tĩnh╰︵╯
Xem chi tiết
Lê Thị Hoài Thi
Xem chi tiết
Binh Tran
Xem chi tiết
Nguyễn Thị Mỹ Duyên
Xem chi tiết
Nguyen Tuan Dat
Xem chi tiết
Trịnh Hoàng Đông Giang
Xem chi tiết
Phước Nguyễn
14 tháng 2 2016 lúc 9:43

\(2.\)  Tính chất: Trong  \(n\)  số nguyên liên tiếp có một  và chỉ một số chia hết cho  \(n\)

Giả sử \(n,\)  \(n+1,...,\)  \(n+1899\)  là dãy \(1900\) số tự nhiên liên tiếp \(\left(1\right)\)

Xét  \(1000\) số tự nhiên liên tiếp từ  \(n,\)  \(n+1,...,\)  \(n+999\)  \(\left(2\right)\)  thuộc dãy số  \(\left(1\right)\)

Theo tính chất trên, sẽ có một số chia hết cho  \(1000\)

Giả sử số đó là  \(n_0\), khi đó \(n_0\) có tận cùng là  \(3\) chữ số \(0\) và  \(m\)  là tổng các chữ số của \(n_0\)

Khi đó, ta xét  \(27\)  số tự nhiên gồm:

\(n_0,\)  \(n_0+9,\)  \(n_0+19,\)  \(n_0+29,\)  \(n_0+39,...,\)  \(n_0+99,\)  \(n_0+199,...,\)  \(n_0+899\)  \(\left(3\right)\)

Sẽ có tổng các chữ số gồm  \(27\)  số tự nhiên liên tiếp là  \(m,\)  \(m+1,\)  \(m+2,...,\)  \(m+26\)

Do đó,  có  \(1\)  số chia hết cho  \(27\)

Vậy,  trong  \(1900\)  số tự nhiên liên tiếp có  \(1\)  số có tổng các chữ số chia hết cho \(27\)