1.cho a,b thõa mãn 1/a - 1/b = 1/ab . Tìm giá trị biểu thức M = ( 1- a^3 + b^3) ( 1- a^2+b^2) ( 1-a +b ) .
cho a,b,c khác 0 thõa mãn 1/a + 1/b + 1/c =3 và 2/ab - 1/c2 =9
Tính giá trị biểu thức M=(a - 3b + c)2018
3 tik đang chờ ngưới trả lời nhanh nhất
\(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
Viết lại đề như sau: \(\hept{\begin{cases}x+y+z=3\\2xy-z^2=9\end{cases}}\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy+z^2=0\)
\(\Leftrightarrow x^2+y^2+2z^2+2yz+2xz=0\)
\(\Leftrightarrow\left(x+z\right)^2+\left(y+z\right)^2=0\)
\(\Leftrightarrow x=y=-z\Leftrightarrow\frac{1}{a}=\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow a=b=-c\)
\(M=\left(a-3b+c\right)^{2018}=\left(a-3a-a\right)^{2018}=\left(3a\right)^{2018}\)
giúp mk câu ni vs::cho các số dương a,b,c thõa mãn ab+bc+ac=1. Tìm giá trị lớn nhất của biểu thức P= 2a/căn(1+a^2) +b/căn(1+b^2)+c/căn(1+c^2)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)
\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)
\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có :
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b +c\right)}}\)
\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)
\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)
P/s : Mình tự nghĩ chứ không phải mình copy đâu
Cho hai số thực a và b thõa mãn a>b và ab =4. tìm giá trị nhỏ nhất của biểu thức P=\(\frac{a^2+b^2+1}{a-b}\)
p = \(\frac{a^2+b^2-2ab+9}{a-b}\)
= (a-b) + \(\frac{9}{a-b}\)
= (\(\sqrt{a-b}\) - \(\frac{3}{\sqrt{a-b}}\))\(^2\) +6
p lớn nhất= 6 khi \(\sqrt{a-b}\)=\(\frac{3}{\sqrt{a-b}}\)
a- b = 3
mà ab = 4
giải pt bậc 2
có a=4, b=1 hoặc a= -1, b= -4
cho a,b,c khác 0 thõa mãn 1/a + 1/b + 1/c =3 và 2/ab - 1/c2 =9
Tính giá trị biểu thức M=(a - 3b + c)2018
6 tik đang chờ người trả lời nhanh nhất (cấm chép mạng, bởi vì có đâu mà chép) :)
sao lại tính ra \(\left(3c\right)^{2018}\)nhỉ, tưởng phải bằng 0 chứ
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Cho 2 số thực a, b thỏa mãn ab ≠ 0, a ≠ 1, b ≠ 1 và a + b = 1. Tính giá trị của biểu thức
\(P=\dfrac{a}{b^3-1}-\dfrac{b}{a^3-1}+\dfrac{2\left(a-b\right)}{a^2b^2+3}\)
Lời giải:
\(P=\frac{a^4-a-b^4+b}{(b^3-1)(a^3-1)}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{(a^4-b^4)-(a-b)}{a^3b^3-(a^3+b^3)+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{(a-b)[(a+b)(a^2+b^2)-1]}{a^3b^3-[(a+b)^3-3ab(a+b)]+1}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{(a-b)[(a^2+b^2)-(a+b)^2]}{a^3b^3-[1-3ab]+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{-2ab(a-b)}{a^3b^3+3ab}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{-2(a-b)}{a^2b^2+3}+\frac{2(a-b)}{a^2b^2+3}=0\)
Lời giải:
\(P=\frac{a^4-a-b^4+b}{(b^3-1)(a^3-1)}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{(a^4-b^4)-(a-b)}{a^3b^3-(a^3+b^3)+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{(a-b)[(a+b)(a^2+b^2)-1]}{a^3b^3-[(a+b)^3-3ab(a+b)]+1}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{(a-b)[(a^2+b^2)-(a+b)^2]}{a^3b^3-[1-3ab]+1}+\frac{2(a-b)}{a^2b^2+3}=\frac{-2ab(a-b)}{a^3b^3+3ab}+\frac{2(a-b)}{a^2b^2+3}\)
\(=\frac{-2(a-b)}{a^2b^2+3}+\frac{2(a-b)}{a^2b^2+3}=0\)
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bạn nên viết ra từng câu
Chứ để như thế này khó nhìn lắm
bạn hỏi từ từ thôi
Cho 3 số thực a b c khác 1 thỏa mãn a + b + c = 3 tìm giá trị của biểu thức B = (a-1)^2 /(b - 1)(c-1) + (b-1)^2/(c-1)(a-1) + (c-1)^2/(a-1)(b-1)
Vì \(a\ne1,b\ne1,c\ne1\)\(\Rightarrow a-1\ne0,b-1\ne0,c-1\ne0\)
Ta có : \(B=\frac{\left(a-1\right)^2}{\left(b-1\right)\left(c-1\right)}+\frac{\left(b-1\right)^2}{\left(c-1\right)\left(a-1\right)}+\frac{\left(c-1\right)^2}{\left(a-1\right)\left(b-1\right)}\)
\(=\frac{\left(a-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}+\frac{\left(b-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}+\frac{\left(c-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)
\(=\frac{\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\left(1\right)\)
Lại có : \(\left(a-1\right)+\left(b-1\right)+\left(c-1\right)=\left(a+b+c\right)-3=3-3=0\)
Ta chứng minh tính chất sau : Nếu \(x+y+z=0\)thì \(x^3+y^3+z^3=3xyz\)
Thật vậy :
Ta có : \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)^3-3\left(x+y\right)z-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)[\left(x+y+z\right)^2-3\left(x+y\right)z-3xy]=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2yz+2zx-3zx-3yz-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)luôn đúng , do \(x+y+z=0\)
Áp dụng vào , khi đó : \(\left(1\right)\Leftrightarrow\)\(\frac{3\left(a-1\right)\left(b-1\right)\left(c-1\right)}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)
Vì \(a-1\ne0,b-1\ne0,c-1\ne0\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\ne0\)
\(\Rightarrow B=3\)
Vậy \(B=3\)
\(B=\frac{\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)
Đặt \(a-1=x,b-1=y,z-1=z\)thì \(x+y+z=0\).
\(B=\frac{x^3+y^3+z^3}{xyz}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz}{xyz}=\frac{3xyz}{xyz}=3\)
tìm x biết :|x-3|+|x-1|+|x+1|+|x+3|+|x+5|=12
cho a, b, c là các số thõa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b. Tính giá trị của biểu thức P=(1+b/a)(1+c/b)(1+a/c)
Mình đg cần gấp nhé...ai giúp mình với
Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m
Chiều dài là : 15 + 22,5 = 37,5 m
Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m
Diện tích là : 37,5 x 22,5 = 843,75 m2
Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c... (a+b+c)=(a+b+c)/(a+b+c)=1
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1)
Tương tự: (b+c-a)/a=1 =>b+c=2a (2)
(c+a-b)/b=1 =>c+a=2b (3)
Thay (1), (2), (3) vào P, ta có:
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau:
Từ giả thiết, suy ra:
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b
Xét 2 trường hợp:
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c=((-c)(-a)(-b))/a...
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8