Rút gọn biểu thức :P
\(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)
Ai nhanh mình tik cho ><
Rút gọn biểu thức: \(A=\dfrac{2}{a-b}+\dfrac{2}{b-c}+\dfrac{2}{c-a}+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right).\left(b-c\right).\left(c-a\right)}\)
Rút gọn biểu thức:
\(\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2.\)
Mình cần gấp nha mấy bạn, ai làm được mình k nha.
Rút gọn biểu thức :
\(\frac{a^2\left(a+b\right)\left(a+c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{b^2\left(b+a\right)\left(b+c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{c^2\left(c+a\right)\left(c+b\right)}{\left(c-a\right)\left(c-b\right)}\)
rút gọn biểu thức
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ca}{\left(b+c\right)\left(b+a\right)}+\frac{c^2-ab}{\left(c+a\right)\left(c+b\right)}\)
Cho a+b+c=0 và a,b,c khác 0.Rút gọn biểu thức
M=\(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)
ta có : a+b+c=0=>a+b=-c ; b+c=-a ; a+c=-b
ta có: M= \(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)
M=\(\frac{2ab}{a^2-a\left(b-c\right)}+\frac{2bc}{b^2-b\left(c-a\right)}+\frac{2ca}{c^2-c\left(a-b\right)}\)
M=\(\frac{2ab}{a\left(a-b+c\right)}+\frac{2bc}{b\left(b-c+a\right)}+\frac{2ca}{c\left(c-a+b\right)}\)
M=\(\frac{2ab}{-ab+\left(a+c\right)}+\frac{2bc}{-bc+\left(a+b\right)}+\frac{2ac}{-ac+\left(b+c\right)}\)
M=\(\frac{2ab}{-2ab}+\frac{2bc}{-2bc}+\frac{2ca}{-2ca}\)
M=-1-1-1=-3
Vậy với a+b+c=0 thì M=-3
cho a+b+c=0 và a, b, c đều khác 0. Rút gọn biểu thức:
\(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)
Rút gọn biểu thức sau
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^2\left(b-c\right)-b^2\left(c+a\right)-c^2\left(a-b\right)+2abc}\)
Rút gọn phân thức:\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
Ai làm xong đúng đầu tiên mik bấm đúng cho.
Ta có:
a2(b - c) + b2(c - a) + c2(a - b)
= (a - b)(c - a)(c - b)
Ta lại có:
a4(b2 - c2) + b4(c2 - a2) + c4(a2 - b2)
= (a - b)(c - a)(c - b)(a +b)(b + c)(c + a)
Từ đây ta có phân số ban đầu sẽ bằng
\(\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
a2 (b-c) + b2 (c -a ) + c2 ( a - b )
= ( a -b ) ( c-a ) (c-b)
Ta lại có :
a4 ( b2 - c2 ) + b4 ( c2 - a2 ) + c4 ( a2 -b2 )
= ( a-b) (c-a) (c-b) (a+b) (b+c) (c+a)
từ đây ta có phân số ban đầu sẽ bằng
( a-b) (c-a) (c-b) 1 = (a-b) (c-a) ( c-b) (a+b)(b+c) (c+a) (a+b) (b+c)(c+a)
Rút gọn biểu thức :
a . \(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)
b . \(\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\)