tim tat ca so tu nhien de n^{n+1}+(n+1)^n
tim tat ca cac so tu nhien n de 4^n-1 chia het cho 7
Tim tat ca cac so tu nhien n de 3n+13 chia het cho n+1
3n+13 chia hết cho n+1=> 3n+3+10 cg chia hết cho n+1=>3*(n+1)+10chia hết cho n+1=> 10 chia hết cho n+1=> tìm n
tim tat ca gia tri so tu nhien N de 3n+13chia het cho n+1
Có 3n + 13 = (3n + 3 )+ 10
=3. (n+1) +10
Có n+1 chia hết cho n+1 => 3(n+1) chia hết cho n+1
=>10 chia hết cho n+1
=> n+1 thuộc ước của 10
Ư(10) = {1;2;5;10}
=> n thuộc {0;1;4;9} (thỏa mãn)
vậy n thuộc{0;1;4;9}
3n +13 CHC n+1
=>3n + 13 - 3(n+1) CHC n+1
=> 10 CHC n+1
=> n+1 là Ư của 10
=> n+1 \(\in\)(\(-1-2,-5,-10,10,5,2,1\))
=> n\(\in\)(0,1,4,9)
kl........................
tim tat ca cac so tu nhien n de tong13 phan n +8 phan nla mot so tu nhien
Để \(\frac{13}{n+8}\)
là 1 stn thì =>13 chia hết cho n+8
=>(n+8) thuộc Ư(13)
mà Ư(13)={1;13;-1;-13}
=> (n+8) thuộc {1;13;-1;-13}
Lập bảng :
n+8 | 1 | 13 | -1 | -13 |
n | -7 | 5 | -9 | -21 |
Mà n là stn =>n=5
Vậy n=5
tim tat ca cac so tu nhien n de cac so sau la so nguyen to :n+1,n+3,n+7,n+9,n+13,n+15
nếu n lẻ thì các số n+3; n+5;... là hợp số
n chẵn: n =0 thì n +1 không là số nguyên tố
n= 2 thì n +7 là hợp số
n=4 thì thoả mãn
n là số 4
vì 4+1=5 là số nguyên tố
4+3=7 là số nguyên tố
4+7=11 là số nguyên tố
4+9=13 là số nguyên tố
4+13=17 là số nguyên tố
4+15=19 là số nguyên tố.
n là số 4
vì 4+1=5 là số nguyên tố
4+3=7 là số nguyên tố
4+7=11 là số nguyên tố
4+9=13 là số nguyên tố
4+13=17 là số nguyên tố
4+15=19 là số nguyên tố.
tim tat ca cac so tu nhien n de phan so n+3/n -12 la phan so toi gian
Ta có: n+3 chia hết n-12
=> n-12+15 chia hết n-12
mà n-12 chia hết n-12
=> 15 chia hết n-12
=> n-12 thuộc Ư(15)={1; -1; 3; -3; 5; -5; 15; -15}
=> n thuộc {3; 11; 15; 9; 17; 7; 27; -3}
tim tat ca cac so tu nhien n de 3n+13 chia het cho n
3.n+13 chia hết cho n
vì 3.n chia hết cho n
nên 3.n+13 chia hết cho n
khi 13chia hết cho n
suy ra n thuộc Ư(13)
suy ra n thuộc {1;13}
\(3n+13⋮n\)
\(\Rightarrow\hept{\begin{cases}3n+13⋮n\\3n⋮n\end{cases}}\)
\(\Rightarrow3n+13-3n⋮n\)
\(13⋮n\)
\(\Rightarrow n\inƯ\left(13\right)=\left\{1;13\right\}\)
Vậy \(n\in\left\{1;13\right\}\)
tim tat ca cac so tu nhien n biet : 3n + 1 chia het cho n - 1
\(3n+1⋮n-1\)
\(\Rightarrow3.\left(n-1\right)+4⋮n-1\)
Vì \(3.\left(n-1\right)⋮n-1\)=> \(4⋮n-1\)
Hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng sau :
n-1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
Vậy ....
cac ban lam tung buoc cho minh nhe..huhu
3n+1chia het cho n-1
-->3n-3+4 chia het cho n-1
-->4 chia het cho n-1
--> n-1 thuoc 2;1;4
-->n thuoc 2;3;5
co tat ca bao nhieu so tu nhien n de phan so n+5/n co gia tri so nguyen. So tu nhien n la