Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ tiền châu
Xem chi tiết
vũ tiền châu
Xem chi tiết
Thắng Nguyễn
16 tháng 8 2017 lúc 21:32

a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

ĐK:tự xác định 

\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)

Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)

\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)

b nghiệm xấu quá để mình xem lại :v

Nguyễn Thiều Công Thành
16 tháng 8 2017 lúc 21:43

\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)

\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)

đến đây thì chịu 

tìm đc 1 nghiệm là -1;1,nên bình phương lên

vũ tiền châu
Xem chi tiết
Nguyễn Thiều Công Thành
17 tháng 8 2017 lúc 22:07

dùng bđt xem sao

vũ tiền châu
Xem chi tiết
HeroZombie
17 tháng 8 2017 lúc 21:03

b,c đề ko ổn

Vũ Phương Mai
17 tháng 8 2017 lúc 21:37

đm m lm lắm thế 

HeroZombie
17 tháng 8 2017 lúc 23:09

a)ĐK:\(-1\le x\le1\)

\(\Leftrightarrow\sqrt{1+\sqrt{1-x^2}}=x+2x\sqrt{1-x^2}\)

\(\Leftrightarrow1+\sqrt{1-x^2}=x^2+4x^2\left(1-x^2\right)+4x^2\sqrt{1-x^2}\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-1-\sqrt{1-x^2}\right)=0\)

SUy ra x=1/2 và pt trong ngoặc suy ra x=1 (bn làm tiếp) 

c)\(\sqrt{x+2}+\sqrt{5-x}+\sqrt{10+3x-x^2}=4\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{5-x}+\sqrt{\left(5-x\right)\left(x+2\right)}=4\)

Đặt \(\sqrt{x+2}=a;\sqrt{5-x}=b\left(a,b\ge0\right)\):

\(a+b+ab=4\)\(\Leftrightarrow\left(a+1\right)\left(b+1\right)=3\)

Ok tiếp nhé

Lê Yến Nhi
Xem chi tiết
vũ tiền châu
Xem chi tiết
Rio Va
26 tháng 9 2017 lúc 18:57

Đặt \(a=\sqrt{2-x^2};b=\sqrt{2-\frac{1}{x^2}};c=x+\frac{1}{x}\)

xet x<0 vt < 2 căn 2<3, vt >4=>loại=>x>0=>c>=2;

ta có a+b=4-c;

a^2+b^2=4-x^2-1/x^2=6-c^2;

\(=>\hept{\begin{cases}2a+2b=8-2c\left(2\right)\\a^2+b^2=6-c^2\left(1\right)\end{cases}}\)

trừ 1 cho 2=>a^2-2a+b^2-2b=-c^2-2-2c=>a^2-2b+1+b^2-2b+1=-c^2+2c-1+1

=>\(\left(a-1\right)^2+\left(b-1\right)^2=-\left(c-1\right)^2+1\)

\(< =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=1\)

ta lại có (a-1)^2>=0;(b-1)^2>=0;(c-1)^2>=(2-1)^2=1=>Vế trái>=1=Vế phải, dấu bằng xảy ra<=>

\(\hept{\begin{cases}a=1\\b=1\\c=2\end{cases}< =>x=1}\)

Trần Hữu Ngọc Minh
26 tháng 9 2017 lúc 17:21

Bạn tham khảo nhé:Điều kiện bạn tự tìm nhé

pt\(\Leftrightarrow\sqrt{2-x^2}+x-2+\sqrt{2-\frac{1}{x^2}}+\frac{1}{x}-2=0\)

\(\Leftrightarrow\frac{2-x^2-\left(x-2\right)^2}{\sqrt{2-x^2}-x+2}+\frac{2-\frac{1}{x^2}-\left(\frac{1}{x}-2\right)^2}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)

\(\Leftrightarrow\frac{-2\left(x^2-2x+1\right)}{\sqrt{2-x^2}-x+2}+\frac{-2\left(\frac{1}{x^2}-\frac{2}{x}+1\right)}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2-x^2}-x+2}+\frac{\left(\frac{1}{x}-1\right)^2}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{2-x^2}-x+2}+\frac{\frac{1}{x^2}}{\sqrt{2-\frac{1}{x^2}}-\frac{1}{x}+2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\Leftrightarrow x=1\left(N\right)\\\frac{1}{\sqrt{2-x^2}-x+2}+\frac{1}{x\sqrt{2x^2-1}-x+2x^2}=0\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x\sqrt{2x^2-1}-x+2x^2+\sqrt{2-x^2}-x+2=0\)

Nhân 2 vào ta có:

\(\Leftrightarrow2x\sqrt{2x^2-1}-4x+4x^2+4+2\sqrt{2-x^2}=0\)

\(\Leftrightarrow\left(x+\sqrt{2x^2-1}\right)^2+\left(\sqrt{2-x^2}+1\right)^2+2\left(x-1\right)^2=0\left(VN\right)\)

Vậy phương trình có 1 nghiệm duy nhất là \(x=1\)

Rio Va
26 tháng 9 2017 lúc 19:13

Bổ sung cách độc lạ hơn nè mình vừa nghĩ ra:

Chuyển vế:

\(\sqrt{2-x^2}+x+\sqrt{2-\frac{1}{x^2}}+\frac{1}{x}=4\)

Ap dụng BĐT a+b<=\(\sqrt{2\left(a^2+b^2\right)}\)

Dấu = khi a=b

=>VT<=\(\sqrt{2\left(2-x^2+x^2\right)}+\sqrt{2\left(2-\frac{1}{x^2}+\frac{1}{x^2}\right)}\)

=2+2=4=VP. Dấu = xảy ra khi \(\hept{\begin{cases}\sqrt{2-x^2}=x\\\sqrt{2-\frac{1}{x^2}}=\frac{1}{x}\end{cases}< =>x=1}\)

vũ tiền châu
Xem chi tiết
alibaba nguyễn
1 tháng 9 2017 lúc 9:42

Trước tiên ta chứng minh:

\(-2005x\sqrt{4-4x}\le2005\left(x^2-x+1\right)\)

Với \(x\ge0\)thì bất đẳng thức đúng.

Với \(x< 0\)

\(\left(-x\sqrt{4-4x}\right)^2\le\left(x^2-x+1\right)^2\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\ge0\)đúng

Quay lại bài toán ta có:

\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006\ge2006\)

\(\Leftrightarrow2006\le\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}\le\left(x-x^2\right)\left(x^2+3x+2007\right)+2005\left(x^2-x+1\right)\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\le0\)

\(\Rightarrow x^2+x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{cases}}\)

PS: Để số 2008 t không giải ra nên thay số 2006 giải được. Chắc bác chép nhầm đề.

Bá đạo sever là tao
1 tháng 9 2017 lúc 12:00

$(x-x^2)(x^2+3x+2007)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

Fire Sky
Xem chi tiết
KAl(SO4)2·12H2O
7 tháng 8 2019 lúc 21:44

\(\sqrt{x^2.\left(x^2+1\right)+1}+\sqrt{3}.\left(x^2+1\right)=3\sqrt{3}.x\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}.x^2+\sqrt{3}=3\sqrt{3}.x\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}=3\sqrt{3}.x-\sqrt{3}.x^2\)

\(\Leftrightarrow\sqrt{x^4+x^2+1}=3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\)

\(\Leftrightarrow\left(\sqrt{x^4+x^2+1}\right)^2=\left(3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\right)\)

\(\Leftrightarrow x^4+x^2+1=-18x^3+3x^4+33x^2-18x+3\)

\(\Leftrightarrow x^4+x^2+1+18x^3-3x^4-33x^2+18x-3=0\)

\(\Leftrightarrow-2x^4-32x^2-2+18x^3+18x=0\)

\(\Leftrightarrow-2\left(x^4+16x^2+1-9x^3-9x\right)=0\)

\(\Leftrightarrow-2\left(x^3-8x^2+8x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow-2\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)^2=0\)

Nhưng vì \(x^2-7x+1\ne0\)nên:

\(x-1=0\Rightarrow x=1\)

\(\Rightarrow x=1\)

vũ tiền châu
Xem chi tiết
Vu Nguyen Minh Khiem
12 tháng 8 2017 lúc 22:03

toán lớp 9 thì ai mà biết chỉ lớp 5 thôi

đáp án là : 0 bít !

Hoàng Phúc
12 tháng 8 2017 lúc 22:06

sống bớt xàm đi bạn trẻ

Bá đạo sever là tao
13 tháng 8 2017 lúc 0:01

ặc vô nghiệm nữa rồi mong ko sai đề tiếp :V