Tìm GTNN: A = |x-2023|+|x-2010|+1
Tìm GTNN của A=|x-1| +| x+2023|
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x-1|+|x+2023|=|1-x|+|x+2023|\geq |1-x+x+2023|=2024$
Vậy $A_{\min}=2024$. Giá trị này đạt được khi:
$(1-x)(x+2023)\geq 0\Leftrightarrow -2023\leq x\leq 1$
Tìm GTNN của A=(x-1)+(x+2023) với x e R
() là dấu trị tuyệt đối
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$A=|x-1|+|x+2023|=|1-x|+|x+2023|\geq |1-x+x+2023|=2024$
Vậy $A_{\min}=2024$.
Giá trị này đạt được khi $(1-x)(x+2023)\geq 0$
$\Leftrightarrow -2023\leq x\leq 1$
tìm GTNN
A=l x - 2021 l + l x - 2022 l + l x - 2023 l
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2021+|x-2023|=|x-2021|+|2023-x|\geq |x-2021+2023-x|=2$
$|x-2022|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2021+|x-2022|+|x-2023|\geq 2+0=2$
Vậy gtnn của biểu thức là $2$. Giá trị này đạt được khi:
$(x-2021)(2023-x)\geq 0$ và $x-2022=0$
$\Leftrightarrow x=2022$
tìm GTNN hoặc GTLN của D = \(\dfrac{\left|x\right|+2023}{\left|x\right|+2022}\)
\(D=\dfrac{\left|x\right|+2023}{\left|x\right|+2022}=\dfrac{\left|x\right|+2022}{\left|x\right|+2022}+\dfrac{1}{\left|x\right|+2022}\\ =1+\dfrac{1}{\left|x\right|+2022}\)
Nhận thấy : \(\left|x\right|\ge0\forall x\inℝ\)
\(\Rightarrow\left|x\right|+2022\ge2022\)
\(\Rightarrow\dfrac{1}{\left|x\right|+2022}\le\dfrac{1}{2022}\)
\(\Rightarrow D=1+\dfrac{1}{\left|x\right|+2022}\le1+\dfrac{1}{2022}=\dfrac{2023}{2022}\)
Dấu = xảy ra khi : \(\left|x\right|=0\Rightarrow x=0\)
Vậy GTLN của D là : \(\dfrac{2023}{2022}\) tại x=0
Tìm GTNN của A=|x-2008|+|x-2009|+|y-2010|+|x-2011|+2008
Bỏ dấu giá trị tuyệt đối:
x \(\le\) 2008 | 2008 < x < 2009 | 2009 \(\le\) x < 2010 | 2010\(\le\)x < 2011 | x \(\ge\) 2011 | |
|x- 2008| | 2008-x | x-2008 | x-2008 | x-2008 | x-2008 |
|x-2009| | 2009-x | 2009-x | x-2009 | x-2009 | x-2009 |
|x-2010| | 2010-x | 2010 - x | 2010 - x | x - 2010 | x - 2010 |
|x-2011| | 2011 - x | 2011 - x | 2011 - x | 2011 - x | x - 2001 |
=>
+) Nếu x \(\le\) 2008 => A = 2008 - x + 2009 - x + 2010 - x + 2011 - x + 2008 = 10 046 - 4x \(\ge\) 10 046 - 4.2008 = 2014
+) Nếu 2008 < x < 2009 => A = x - 2008 + 2009 - x + 2010 - x + 2011 - x + 2008 = 6030 - 2x > 6030 - 2.2009 = 2012
+) Nếu 2009 \(\le\) x < 2010 => A = x - 2008 + x - 2009 + 2010 - x + 2011 - x + 2008 = 2012
+) Nếu 2010 \(\le\) x < 2011 => A = x - 2008 + x - 2009 + x - 2010 + 2011 - x + 2008 = 2x - 2008 \(\ge\) 2.2010 - 2008 = 2012
+) Nếu x \(\ge\) 2011 => A = x - 2008 + x - 2009 + x - 2010 + x - 2011 + 2008 = 4x - 6030 \(\ge\) 4.2011 - 6030 = 2014
Từ các trường hợp trên => A nhỏ nhất bằng 2012 khi x = 2009 ; hoặc x = 2010
tìm gtnn của biểu thức A = x + 2y - (6 căn x ) - ( 10 căn y ) + (2 căn xy ) + 2023 với x ,y là các số thực không âm
Tìm GTNN của \(A=|x|+|2x+1|+|3x+2|+...+|2011x+2010|\)
Tìm GTNN của biểu thức
A= / x- 2011/ + /x- 2012/
B= / x- 2010/ + /x- 2011/ + /x - 2012/
C= /x-1/ + / x-2/ +.....+ / x-100/
c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)
Vậy MinC = 2500 khi 50 =< x =< 56
a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1
Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)
Vậy MinA = 1 khi 2011 =< x =< 2012
b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011|
Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)
Mà \(\left|x-2011\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)
Vậy MinB = 2 khi x = 2011
Câu c để nghĩ
Tìm GTNN của |20092007x a +2010|