Tìm các số nguyên x biết:
(x+2) (x-1) > 0
Tìm các số nguyên a,v,c,d,e,biết tổng của chúng bằng 0 và a+b=c+d=d+e=2
Tìm các số nguyên x,y,z biết x+y+z=0;x+y=3;y+z=-1
Tìm các số nguyên x biết:
(x+3) (x-2) < 0
Ta có các trường hợp sau:
+TH1: \(\left\{{}\begin{matrix}x+3>0\\x-2< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 2\end{matrix}\right.\)\(\Leftrightarrow-3< x< 2\)
+TH2: \(\left\{{}\begin{matrix}x+3< 0\\x-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>2\end{matrix}\right.\) (vô lý)
Vậy -3<x<2
Tìm các số nguyên x,y biết
A) ( x + 2 ) . ( y - 3 ) = 0
B) ( x + 1 ) . ( xy - 1 ) =0
A, => x+2=0 hoặc y-3=0
=> x=-2 hoặc y=3
B, => x+1=0 hoặc xy-1=0
=> x=-1 hoặc xy=1
=> x=-1 hoặc x=y=+-1
a) \(\left(x+2\right).\left(y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
b) \(\left(x+1\right)\left(xy-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\xy-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
a)Vì \(\left(x+2\right)\left(y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
b)Vì \(\left(x+1\right)\left(xy-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\xy-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\-1.y=1\Leftrightarrow y=-1\end{cases}}\)
tìm các sốx,y biết 7/x = y/1 với x,y là số nguyên khác 0
\(\frac{7}{x}=\frac{y}{1}\)
\(\Leftrightarrow x\cdot y=7\)
+) \(\hept{\begin{cases}x=1\\y=7\end{cases}}\)
+) \(\hept{\begin{cases}x=-1\\y=-7\end{cases}}\)
+) \(\hept{\begin{cases}x=7\\y=1\end{cases}}\)
+) \(\hept{\begin{cases}x=-7\\y=-1\end{cases}}\)
Vậy....
Bài 1 . Tìm các số tự nhiên n biết : 6 là bội của n + 1 .
Bài 2 . Tìm các số nguyên x sao cho 2x - 5 chia hết cho x + 1.
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
Tìm các số nguyên x, y biết rằng:
x/4−1/y=1/2
\(\frac{1}{y}=\frac{x}{4}-\frac{1}{2}=\frac{x-2}{4}\)
Suy ra y.(x - 2) = 4. Vì x, y ∈ Z nên x - 2 ∈ Z, ta có bảng sau:
y | 1 | -1 | 2 | -2 | 4 | -4 |
x-2 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 6 | -2 | 4 | 0 | 3 | 1 |
Bạn tham khảo thử nhé !
Tìm các số nguyên x,y biết ;
x/6 - 1/y = 1/2
x/6-1/y=1/2
=> quy đồng vế trái đc: (xy-6)/6y=1/2 => xy - 6 = 3y => y*(x-3)=6
=> có các trường hợp:
y=1 => x-3=6
y=2 => x-3=3
y=3 => x-3=2
y=6 => x-3=1
y=-1 => x-3=-6
y=-2 => x-3=-3
y=-3 => x-3=-2
y=-6 => x-3=-1
Hãy tìm các số nguyên x,y biết:
(x-1).(y+2)=5
=>5=1x5=-1x(-5)
=>x-1=1=1+1 =>x=2 x-1=5=5+1 =>x=6
y+2=5=5-2 =>y=3 y+2=1=1-2 =>y=-1
x-1=-1=-1+1 =>x=0 x-1=-5=-5+1 =>x=-4
y+2=-5=-5-2 =>y=-7 y+2=-1=-1-2 =>x=-3
tick cho mình mình tick lại cho
Tìm các cặp số nguyên x, y biết:
(X-1)(y+2)