chung minh rang n2+3n+5 khong chia het cho 121
Hay chung to rang voi moi n la so tu nhien thi \(n^2+3n+5\)khong chia het cho 121
Đặt n2+3n+5 = (*)
Giả sử n=1 => (*) <=> 12+3.1+5 không chia hết cho 121 ( đúng )
Vậy với n=1 đúng
Giả sử (*) đúng với n=k
=> (*) <=> k2+3k+5
Ta cần c/m (*) đúng với n = k+1
Thật vậy với n= k+1
=> (*) <=> (k+1)2+3(k+1)+5
tự viết tiếp
chung minh rang 9n3+9n2+3n-16 khong chia het cho 343
Đặt A=9n^3+9n^2+3n-16
Ta có 343=7^3
A=9n^3+9n^2+3n-16
=>3A=27n^3+27n^2+9n-48
=>3A=27n^3+27n^2+9n+1-49
=>3A=[(9n)^3+3(3n)^2(1)+3(3n)1^3+1^3]-49
=>3A=(3n+1)^3-49
Nếu 3n+1 chia hết cho 7=>(3n+1)^3 chia hết cho 7^3
Nhưng 49 ko chia hết cho 7^3
=>3A ko chia hết cho 7^3
=>A ko chia hết cho 7^3
=>A ko chia hết cho 343 <ĐPCM>
chung minh rang voi n thuoc so tu nhien thi n2+3n+9 khong chia het cho 12
chung minh rang voi n thuoc so tu nhien thi n2+3n+9 khong chia het cho 12
Cho n thuoc N , chung minh rang n m mu 2 cong n cong 1 khong chia het cho 4 , khong chia het cho 5
n2+n+1=n(n+1)+1
Vì vì n(n+1) là tích của hai số tự nhiên liên tiếp nên tích của chúng sẽ có chữ số tận cùng là 0,2,6 nên n(n+1)+1 sẽ có chữ số tận cùng là 1,3,7 không chia hết cho 4 vì các số sau đều là số lẻ. Tương tự, không chia hết cho 5, vì có chữ số tận cùng không phải 0,5 nén không chia hết cho 5.
Nhớ K MÌNH NHA!!!!!!!!!!!!!!
Chung minh rang : Tong 4 so le lien tiep chia het cho 8?
Chung minh rang : Tong 4 so chan lien tiep khong chia het cho 8 va du bao nhieu ?
Giup minh nha minh tick cho
Minh khong ghi dau nen ai khong hieu hoi o ben duoi nha!
cho a khong chia het cho 5,b khong chia het cho 5;chung minh rang:(a4-b4) chia het cho5
Goi y: dung "hang dang thuc dang nho'' cong thuc 3
Chung minh rang : Tong 4 so le lien tiep chia het cho 8?
Chung minh rang : Tong 4 so chan lien tiep khong chia het cho 8 va du bao nhieu ?
Giup minh nha minh tick cho
Minh khong ghi dau nen ai khong hieu hoi o ben duoi nha!
Gọi 4 số lẻ liên tiếp là 2k+1, 2k+3, 2k+5, 2k+7 ( k thuộc tập số nguyên)
Ta có: 2k+1+2k+3+2k+5+2k+7=8k+16
=8(k+2) chia hết cho 8 vì 8 chia hết cho 8 => đpcm
Gọi 4 số chẵn liên tiếp là 2k, 2k+2, 2k+4, 2k+6
Ta có: 2k+2k+2+2k+4+2k+6=8k+12 không chia hết cho 8 vì 12 không chia hết cho 8 => đpcm
Vì 8k chi hết cho 8 ( do 8 chia hết cho 8) nên 12 chia 8 dư bao nhiêu thì tổng chia 8 dư bấy nhiêu
Ta có 12 chia 8 dư 4 nên tổng 4 số chẵn liên tiếp cũng sẽ chia 8 dư 4.
chung minh rang tong cua 3 so tu nhien lien tiep chia het cho 3,tong cua 5 so tu nhien lien tiep khong chia het cho 5
tổng 5 chữ sô chữ nhiên liên tiếp vẫn chia hết cho 5 sao mà chứng minh được \(VD:1+2+3+4+5=15⋮5\)
Gọi 3 số tự nhiên liên tiếp là a , b , c
a = x . 3
b = x . 3 + 1
c = x . 3 + 2
Tổng của chúng là x . 3 + x . 3 + 1 + x . 3 + 2 = x . 3 . 3 + 1 + 2 = x . 3 . 3 + 3 = x . 9 + 3
Các số hạng của tổng đều chia hết cho 3
=> x . 9 + 3 chia hết cho 3 <=> tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b ) Tương tự câu đầu