Tìm giá trị của x, biết: \(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}.\)
x = ....
1/ CMR : \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
2/ Xét \(A=\left(\frac{a+1}{ab+1}+\frac{ab+a}{ab-1}-1\right):\left(\frac{a+1}{ab+1}-\frac{ab+a}{ab-1}+1\right)\)
a/ rút gọn
b/ tìm GTNN mà A đạt được biết a + b = 4
3/ CMR giá trị biểu thức biểnsau ko phụ thuộc vào giá trị của biến
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\) khi \(x\ne0;y\ne0;x\ne y\)
\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)
\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)
\(\frac{2011^3+11^3}{2011^3+2000^3}\)
\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)
\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)
\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)
\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)
đpcm
\(A=\left(\frac{a+1}{ab+1}+\frac{ab+a}{ab-1}-1\right):\left(\frac{a+1}{ab+1}-\frac{ab+a}{ab-1}+1\right)\)
\(A=\left[\frac{\left(a+1\right)\left(ab-1\right)+\left(ab+a\right)\left(ab+1\right)-\left(ab+1\right)\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{\left(a+1\right)\left(ab-1\right)-\left(ab+a\right)\left(ab+1\right)+\left(ab+1\right)\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]\)\(A=\left[\frac{a^2b-a+ab-1+a^2b^2+ab+a^2b+a-a^2b^2+1}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{a^2b-a+ab-1-a^2b^2-ab-a^2b-a+a^2b^2-1}{\left(ab+1\right)\left(ab-1\right)}\right]\)\(A=\left[\frac{2a^2b+2ab}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a^2b-2a}{\left(ab+1\right)\left(ab-1\right)}\right]\)
\(A=\left[\frac{2ab\left(a+1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a\left(ab-1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]\)
\(A=\left[\frac{2ab\left(a+1\right)}{\left(ab+1\right)\left(ab-1\right)}\right]:\left[\frac{2a}{\left(ab+1\right)}\right]\left(ab-1\ne0\right)\)
\(A=\frac{b\left(a+1\right)}{ab-1}\left(ab+1\ne0;2a\ne0\right)\)
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
Tính giá trị của \(x\)
Ta có:\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
\(\Leftrightarrow-\frac{1}{x+1}=\frac{1}{2011}\)\(\Leftrightarrow-x-1=2011\)
\(\Leftrightarrow x=-2012\)
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
=> \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}-\frac{-1}{2011}\)
=> \(\frac{1}{x+1}=\frac{-1}{2011}=\frac{1}{-2011}\)
=> x + 1 = -2011
=> x = -2011 - 1
=> x = -2012
Vậy x = -2012
Ta có: \(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
\(\Leftrightarrow\frac{1}{x+1}=-\frac{1}{2011}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{-2011}\)
\(\Leftrightarrow x+1=-2011\)
\(\Leftrightarrow x=-2012\)
Vậy \(x=-2012\)
giá trị của x thỏa mãn \(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}là?\)
\(\frac{1}{x\left(x+1\right)}\)= \(\frac{1}{x}\)+ \(\frac{1}{2011}\). Tìm giá trị x
ĐKXĐ: \(x\ne0,x\ne-1\)
Ngoài việc quy đồng có thể giải như sau:
Ta thấy: \(\frac{1}{x\left(x+1\right)}=\frac{\left(x+1\right)-x}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
Nên từ đề bài => \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
=>\(-\frac{1}{x+1}=\frac{1}{2011}\)=> \(-\left(x+1\right)=2011\)=>\(-x-1=2011\)=>\(x=-2012\)( thỏa mãn ĐKXĐ)
Kết luận.
Cho biểu thức \(P=\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
Tìm điều kiện của x để giá trị của biểu thức được xác địnhTìm giá trị của x để giá trị của P=0Tìm giá trị của x để |P|=1Cho biểu thức :\(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
a/ Thu gọn A
b/ Tìm các giá trị của x để A<1
c) Tìm các giá trị nguyên của x để A có giá trị nguyên
Ta có \(A=[\frac{2}{\left(x+1\right)^3}\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)]:\frac{x-1}{x^3}\)
\(\Leftrightarrow A=\left[\frac{2}{\left(x+1\right)^3}.\frac{x+1}{x}+\frac{1}{\left(x+1\right)^2}.\frac{x^2+1}{x^2}\right].\frac{x^3}{x-1}\)
\(\Leftrightarrow A=\left[\frac{2x+x^2+1}{x^2\left(x+1\right)^2}\right].\frac{x^3}{x+1}=\frac{x}{x+1}\)
Để \(A=\frac{x}{x+1}< 1\Leftrightarrow\frac{1}{x+1}>0\Leftrightarrow x>-1\)
Để \(A=1-\frac{1}{x+1}\text{ nguyên thì }\frac{1}{x+1}\text{ nguyên hay }x\in\left\{-2,0\right\} \)
cho biểu thức
\(P=\left(\frac{1}{x+1-\frac{1}{x-1+\frac{1}{x}}}-\frac{1}{x}\right)\cdot\left(x+\frac{\frac{1}{2x}}{1-\frac{1}{x}}-\frac{\frac{1}{2x}}{1+\frac{1}{x}}\right)\)
a) Rút gọn P;
b) tính giá trị của P với x=0,9;
c) Tìm x để P=0.
d) Tìm các giá trị nguyên của x để P nhận giá trị nguyên.
Cho 3 số x y z thỏa mãn x + y + z = 2010 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\)
Tính giá trị biểu thức P= \(\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2011}+x^{2011}\right)\)
Giá trị của x thỏa mãn: \(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
Ghi rõ cách giải ra
\(\frac{1}{x\left(x+1\right)}=\frac{\left(x+1\right)-x}{x\left(x+1\right)}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
=>\(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
=>\(\frac{1}{x}-\frac{1}{x+1}-\frac{1}{x}=\frac{1}{2011}\)
=>\(\frac{1}{x}-\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2011}\)
=>\(0-\frac{1}{x+1}=\frac{1}{2011}\)
=>\(-\frac{1}{x+1}=\frac{1}{2011}\)
=>-x+1=2011
=>-x=2011-1
=>-x=2010
=>x=-2010
Vậy x=-2010
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}+\frac{1}{2011}\)
<=>\(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x}+\frac{1}{2011}\)
<=>\(-\frac{1}{x+1}=\frac{1}{2011}\)
<=>-x-1=2011
<=>x=-2012
Đáp số: \(x=-2012\)
<=>\(\frac{1}{x}-\frac{1}{x+1}\)=\(\frac{1}{x+}+\frac{1}{2011}\)
<=>\(\frac{1}{x}+\left(\frac{-1}{x+1}\right)=\frac{1}{x}+\frac{1}{2011}\)
<=>\(-\frac{1}{x}=\frac{1}{2011}\)
<=>2011(-1)=x.1
<=>-2011=x
<=>x=-2011
vậy x=-2011