CMR đa thức sau vô nghiệm: R(x)=-x^8+x^5-x^2+x-1
Chứng minh rằng đa thức sau vô nghiệm: R(x)=x^8-x^5+x^2-x+1
Giúp mình nhanh nha, sắp thi rùi!!!
Chứng minh rằng đa thức sau vô nghiệm: R(x)=x^8-x^5+x^2-x+1
Giúp mình nhanh nha, sắp thi rùi!!!
Giả sử đa thức R(x) tồn tại một nghiệm n nào đó, n là số thực
Khi đó: R(x) = x^8 -x^5 + x^2 -x +1 = 0
(x^8 + x^2 ) -( x^5 + x) = -1 (**)
Vì (x^8 + x^2 ) > ( x^5 + x) nên (x^8 + x^2 ) -( x^5 + x) luôn lớn hơn 0 trái với (**)
Vậy đa thức R(x) vô nghiệm
Ta có: x^8-x^5+x^2-x+1 = (x+x^2+x^5)-x^5+x^2-x+1 = (x^5-x^5)+(x^2+x^2)+(x-x)+1 = 0+2x^2+0+1 = 2x^2+1
Vì 2x^2 \(\ge\) 0 nên 2x^2+1 \(\ge\) 1
Vậy R(x) không có nghiệm
Chúc bạn hoc tốt! k mik nha
cho đa thức : h(x) = x^4 + 1/2x^2 + 2012 . chứng tỏ h(x) vô nghiệm
CTR đa thứa : 3x^2010 + x^1002+ 1 vô nghiệm
CTR đa Thức : M(x)= x^2 + 2x + 2 vô nghiệm
CTR đa thức : M(x) = x^2 + 2x + 1 chỉ có 1 nghiệm duy nhất tìm nghiệm duy nhất đó
CMR đa thức M(x) = x^2 - x + 5 không có nghiệm nguyên
CMR đa thức sau vô nghiệm:
a)Q(x)=x3+5x2+2x+3
b)R(x)=-x8+x5-x2+x-1
a)CMR đa thức x2+x+1 vô nghiệm
b)Cho đa thức f(x) thoả mãn
x.f(x+1)=(x+2).f(x)
CMR đa thức f(x) ít nhất 2 nghiệm 0 và -1
Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0.
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)
+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2
CMR đa thức sau vô nghiệm: x^2+5x^2+1
: Delta = (-5)^2 - 4.1.1 = 21 - 80 = -59 . Vì Delta < 0 nên đa thức x^2 - 5x + 1 vô nghiệm
Ta có: \(x^2+5x^2+1\)
\(=x^2+\frac{5}{2}x^2+\frac{5}{2}x^2+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+1\)
\(=x\left(x^2+\frac{5}{2}\right)+\frac{5}{2}\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)
\(=\left(x^2+\frac{5}{2}\right)\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)
\(=\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\)
Ta có:\(\left(x^2+\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\le0\)
Vậy đa thức trên không có nghiệm
Ta có \(x^2+5x^2+1\)= \(6x^2+1\)
Ta có \(6x^2\ge0\)với mọi giá trị của x
=> \(6x^2+1>0\)với mọi gt của x
=> \(6x^2+1\)vô nghiệm (đpcm)
CMR các đa thức sau vô nghiệm: x^11-x^9+x^4-x+1
cm đa thức sau vô nghiệm C=x^10-x^5+x^2-x+1
Chứng minh rằng các đa thức sau vô nghiệm
f(x)=x8-x5+x2-x+1
g(x)=x10-x5+x2-x+1
Ta xét 3 khoảng giá trị:
+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này f(x) vô nghiệm.
+) Nếu \(0< x< 1\)
Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)
Vì 0 < x < 1 nên \(x^5,1-x^3>0\)
Áp dụng bđt Cauchy, ta được:
\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)
\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)
Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)
Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)
\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)
Ở khoảng này đa thức cũng vô nghiệm.
+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này đa thức cũng vô nghiệm.
Vậy đa thức f(x) vô nghiệm