Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NO NAME
Xem chi tiết
NO NAME
Xem chi tiết
Mai Thanh Tâm
21 tháng 4 2016 lúc 21:41

Giả sử đa thức R(x) tồn tại một nghiệm n nào đó, n là số thực

Khi đó: R(x) = x^8 -x^5 + x^2 -x +1 = 0

                     (x^8 + x^2 ) -( x^5 + x) = -1 (**)

Vì  (x^8 + x^2 ) > ( x^5 + x) nên  (x^8 + x^2 ) -( x^5 + x)  luôn lớn hơn 0 trái với (**)

Vậy đa thức R(x) vô nghiệm

Đức Nguyễn Ngọc
21 tháng 4 2016 lúc 21:41

Ta có: x^8-x^5+x^2-x+1 = (x+x^2+x^5)-x^5+x^2-x+1 = (x^5-x^5)+(x^2+x^2)+(x-x)+1 = 0+2x^2+0+1 = 2x^2+1

Vì 2x^2 \(\ge\)  0 nên 2x^2+1 \(\ge\) 1

Vậy R(x) không có nghiệm

Chúc bạn hoc tốt! k mik nha

Nguyễn Thị Thu Hằng
Xem chi tiết
oOo NhỎ tHiêN cHỉ HạC oO...
Xem chi tiết
Duong Minh Hieu
Xem chi tiết
Thám tử trung học Kudo S...
31 tháng 5 2017 lúc 12:05

 Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0. 
Nếu f(a) = 0 => a là nghiệm của f(x). 
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x. 
+ Thay x = 0 vào (1) ta được 
0.f(0 + 1) = (0 + 2).f(0) 
=> 0 = 2.f(0) 
=> f(0) = 0 
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2) 

+ Thay x = -2 vào (1) ta được: 
(-2).f(-2 + 1) = (-2 + 2).f(-2) 
=> (-2).f(-1) = 0.f(-2) 
=> (-2).f(-1) = 0 
=> f(-1) = 0 
=> x = -1 là 1 nghiệm của đa thức trên (3) 
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2

Nguyễn Trọng Quang Huy
Xem chi tiết
Nguyễn Mai Hương
4 tháng 4 2018 lúc 19:42

:  Delta = (-5)^2 - 4.1.1 = 21 - 80 = -59 . Vì Delta < 0 nên đa thức x^2 - 5x + 1 vô nghiệm

Nguyễn Hữu Triết
4 tháng 4 2018 lúc 19:46

Ta có: \(x^2+5x^2+1\)

\(=x^2+\frac{5}{2}x^2+\frac{5}{2}x^2+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+1\)

\(=x\left(x^2+\frac{5}{2}\right)+\frac{5}{2}\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)

\(=\left(x^2+\frac{5}{2}\right)\left(x^2+\frac{5}{2}\right)-\frac{21}{4}\)

\(=\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\)

Ta có:\(\left(x^2+\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow\left(x^2+\frac{5}{2}\right)^2-\frac{21}{4}\le0\)

Vậy đa thức trên không có nghiệm

Huy Hoàng
4 tháng 4 2018 lúc 19:50

Ta có \(x^2+5x^2+1\)\(6x^2+1\)

Ta có \(6x^2\ge0\)với mọi giá trị của x

=> \(6x^2+1>0\)với mọi gt của x

=> \(6x^2+1\)vô nghiệm (đpcm)

Tuấn Vinh
Xem chi tiết
Nguyễn Thành Vinh
Xem chi tiết
Trần Dương An
Xem chi tiết
Kiệt Nguyễn
21 tháng 2 2020 lúc 14:50

Ta xét 3 khoảng giá trị:

+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)

\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)

\(\Rightarrow f\left(x\right)\ge1>0\)

Ở khoảng này f(x) vô nghiệm.

+) Nếu \(0< x< 1\)

Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)

\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)

Vì 0 < x < 1 nên \(x^5,1-x^3>0\)

Áp dụng bđt Cauchy, ta được:

\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)

\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)

Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)

Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)

\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)

\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)

Ở khoảng này đa thức cũng vô nghiệm.

+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)

\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)

\(\Rightarrow f\left(x\right)\ge1>0\)

Ở khoảng này đa thức cũng vô nghiệm.

Vậy đa thức f(x) vô nghiệm

Khách vãng lai đã xóa