giải phương trình vô tỉ sau
\(x\left(x-1\right)\left(x-3\right)+3=\sqrt{4-x}+\sqrt{x+1}\)
giải bất phương trình vô tỉ sau
\(\sqrt[4]{\left(x-3\right)\left(5-x\right)}+\sqrt[4]{x-3}+\sqrt[4]{5-x}+6\left(x-1\right)\sqrt{3\left(x-1\right)}< =x^3-3x^2+3x+29\)
giải phương trình vô tỉ sau
\(x^3+\sqrt{\left(1-x^2\right)^3}=x\sqrt{2.\left(1-x^2\right)}\)
Giải phương trình vô tỉ:
\(\sqrt{x^2\left(x^2+1\right)+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3}x\)
\(\sqrt{x^2.\left(x^2+1\right)+1}+\sqrt{3}.\left(x^2+1\right)=3\sqrt{3}.x\)
\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}.x^2+\sqrt{3}=3\sqrt{3}.x\)
\(\Leftrightarrow\sqrt{x^4+x^2+1}+\sqrt{3}=3\sqrt{3}.x-\sqrt{3}.x^2\)
\(\Leftrightarrow\sqrt{x^4+x^2+1}=3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\)
\(\Leftrightarrow\left(\sqrt{x^4+x^2+1}\right)^2=\left(3\sqrt{3}.x-\sqrt{3}.x^2-\sqrt{3}\right)\)
\(\Leftrightarrow x^4+x^2+1=-18x^3+3x^4+33x^2-18x+3\)
\(\Leftrightarrow x^4+x^2+1+18x^3-3x^4-33x^2+18x-3=0\)
\(\Leftrightarrow-2x^4-32x^2-2+18x^3+18x=0\)
\(\Leftrightarrow-2\left(x^4+16x^2+1-9x^3-9x\right)=0\)
\(\Leftrightarrow-2\left(x^3-8x^2+8x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow-2\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-7x+1\right)\left(x-1\right)^2=0\)
Nhưng vì \(x^2-7x+1\ne0\)nên:
\(x-1=0\Rightarrow x=1\)
\(\Rightarrow x=1\)
giải các phương trình vô tỉ sau
1) \(2.\sqrt{2x-x^2}+4=3\left(\sqrt{x}+\sqrt{x+3}\right)\)
toán lớp 9 thì ai mà biết chỉ lớp 5 thôi
đáp án là : 0 bít !
ặc vô nghiệm nữa rồi mong ko sai đề tiếp :V
giải phương rình vô tỉ sau
\(\sqrt{x+3}+\sqrt{2+x}=x^3+x^2-4x-4+\left|x\right|+\left|x-1\right|\)
giải phương trình vô tỉ sau
1) \(\sqrt{1+\sqrt{1-x^2}}=x\left(1+2\sqrt{1-x^2}\right)\)
2) \(\left(x+4\right)\left(x+1\right)-\sqrt{3x^2+5x+2}=6\)
3) \(\sqrt{x+2}+\sqrt{5-x}+\sqrt{10+3x-x^2}=4\)
a)ĐK:\(-1\le x\le1\)
\(\Leftrightarrow\sqrt{1+\sqrt{1-x^2}}=x+2x\sqrt{1-x^2}\)
\(\Leftrightarrow1+\sqrt{1-x^2}=x^2+4x^2\left(1-x^2\right)+4x^2\sqrt{1-x^2}\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-1-\sqrt{1-x^2}\right)=0\)
SUy ra x=1/2 và pt trong ngoặc suy ra x=1 (bn làm tiếp)
c)\(\sqrt{x+2}+\sqrt{5-x}+\sqrt{10+3x-x^2}=4\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{5-x}+\sqrt{\left(5-x\right)\left(x+2\right)}=4\)
Đặt \(\sqrt{x+2}=a;\sqrt{5-x}=b\left(a,b\ge0\right)\):
\(a+b+ab=4\)\(\Leftrightarrow\left(a+1\right)\left(b+1\right)=3\)
Ok tiếp nhé
giải phương trình vô tỉ sau
\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2008\)
Trước tiên ta chứng minh:
\(-2005x\sqrt{4-4x}\le2005\left(x^2-x+1\right)\)
Với \(x\ge0\)thì bất đẳng thức đúng.
Với \(x< 0\)
\(\left(-x\sqrt{4-4x}\right)^2\le\left(x^2-x+1\right)^2\)
\(\Leftrightarrow\left(x^2+x-1\right)^2\ge0\)đúng
Quay lại bài toán ta có:
\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006\ge2006\)
\(\Leftrightarrow2006\le\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}\le\left(x-x^2\right)\left(x^2+3x+2007\right)+2005\left(x^2-x+1\right)\)
\(\Leftrightarrow\left(x^2+x-1\right)^2\le0\)
\(\Rightarrow x^2+x-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{cases}}\)
PS: Để số 2008 t không giải ra nên thay số 2006 giải được. Chắc bác chép nhầm đề.
$(x-x^2)(x^2+3x+2007)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
giải các phương trình vô tỉ sau
1) \(\sqrt{x+8}=\frac{3x^2+7x+8}{3x+1}\)
2) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !
câu 1 ) thì đúng
câu 2 sai đề
bài 1 chắc bạn sai đề. Mình lười lắm nên link đây nhé https://diendantoanhoc.net/topic/96618-sqrtx8frac3x27x84x2/
Giải phương trình vô tỉ sau:
a, \(\sqrt{1+\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^6}-\sqrt{\left(1-x\right)^3}\right]=1+\sqrt{1-x^2}\)
b, \(\sqrt{x+1}=x^2+4x+5\)
c, \(\sqrt{x+1}=x^{\text{4}}+4x^2+5\)
d, \(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)