Chứng minh rằng không thể tồn tại số n sao cho n2 +1=19951995...1995 (có 10 số 1995)
CM ko tồn tại n: n^2 +1= 19951995...1995(10 số 1995)
Do 19951995...1995(10 số 1995) có tận cùng là 95 nên số này chia 4 dư 3
Giả sử: n2 + 1 = 19951995...1995(10 số 1995)
Do 19951995...1995(10 số 1995) chia 4 dư 3; 1 chia 4 dư 1 => n2 chia 4 dư 2, không là số chính phương, vô lí
Vậy không tồn tại n để n2 + 1 = 19951995...1995(10 số 1995) ( đpcm)
chứng minh rằng tồn tại số có dạng 19941994...199400...0 chia hết cho 1995.
Xét 1995 số có dạng : 1994 ; 19941994 ; ... ; .
Nếu một trong các số trên chia hết cho 1995 thì dễ có đpcm.
Nếu các số trên đều không chia hết cho 1995 thì khi chia từng số cho 1995 khả năng sẽ chỉ có 1994
dư là 1 ; 2 ; 3 ; ... ; 1994.
Vì có 1995 số dư mà chỉ có 1994 khả năng dư, theo nguyên lí Đi-rích-lê tồn tại ít nhất 2 số khi chia
cho 1995 có cùng số dư, hiệu của chúng chia hết cho 1995. Giả sử hai số đó là
Khi đó : = 1994...199400...0 chia hết cho 1995 (đpcm).
1)Chứng minh rằng các tổng sau không thể là số chính phương :
a) M = 19k + 5k + 1995k + 1996k (với k chẵn)
b) N = 20042004k + 2003
2) Tìm chữ số tận cùng của tổng T = 23 + 37 + 411 + … + 20048011
3) Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Chứng mình rằng tồn tại số có dạng 19941994...199400...0 chia hết cho 1995
Xét 1995 số có dạng : 1994 ; 19941994 ; ... ; .
Nếu một trong các số trên chia hết cho 1995 thì dễ dàng có đpcm.
Nếu các số trên đều không chia hết cho 1995 thì khi chia từng số cho 1995 sẽ chỉ có 1994 khả năng
dư là 1 ; 2 ; 3 ; ... ; 1994.
Vì có 1995 số dư mà chỉ có 1994 khả năng dư, theo nguyên lí Đi-rích-lê tồn tại ít nhất 2 số khi chia
cho 1995 có cùng số dư, hiệu của chúng chia hết cho 1995. Giả sử hai số đó là :
Khi đó : = 1994...199400...0 chia hết cho 1995 (đpcm).
đúng cái nhé
Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
bài giải : 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
: 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
chứng minh rằng luôn tồn tại số tự nhiên được viết bởi chỉ các chữ số 0 và các chữ số 7 mà số đó chia hết cho 1995
chứng minh rằng luôn tồn tại số tự nhiên được viết bởi chỉ các chữ số 0 và các chữ số 7 mà số đó chia hết cho 1995
tìm a,b thuộc N biết a^1000.b^1000.(a^2004+b^2004)=19951995...1995(1995 lan 1995)