Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyễn
Xem chi tiết
Nguyễn Nhã Thanh
Xem chi tiết
Tran Ngoc Diep
20 tháng 8 2017 lúc 11:50

xin lỗi,giờ mình mới học lớp 6 thôi

Trần Nguyễn
Xem chi tiết
Hoàng Thị Lan Hương
1 tháng 8 2017 lúc 16:35

a. \(A=\frac{\left(\sqrt{x-2}\right)^2-3^2}{\sqrt{x-2}-3}=\frac{\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}+3\right)}{\sqrt{x-2}-3}=\sqrt{x-2}+3\)

b. \(B=\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}\)

\(=\frac{1-\sqrt{a}+1+\sqrt{a}}{2\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}=\frac{1}{1-a}-\frac{a^2+2}{\left(1-a\right)\left(a^2+a+1\right)}\)

\(=\frac{a^2+a+1-a^2-2}{\left(1-a\right)\left(a^2+a+1\right)}=\frac{a-1}{\left(1-a\right)\left(a^2+a+1\right)}=-\frac{1}{a^2+a+1}\)

Trần Nguyễn
1 tháng 8 2017 lúc 16:04

câu b là B=\(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}\) nhé, em ghi nhầm

Hoàng Thị Lan Hương
1 tháng 8 2017 lúc 16:46

Tách \(x-11=\left(x-2\right)-9=\left(\sqrt{x-2}\right)^2-9=\left(\sqrt{x-2}\right)^2-3^2\)

nguyen phuong thao
Xem chi tiết
゚°☆Morgana ☆°゚ ( TCNTT )
11 tháng 6 2019 lúc 15:19

em ko bieets hu hu

T.Ps
11 tháng 6 2019 lúc 15:41

#)Giải :

a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)

\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)

T.Ps
11 tháng 6 2019 lúc 15:44

#)Giải :

b) Để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\)

\(\Leftrightarrow\sqrt{x}< 3\)

\(\Leftrightarrow x< 9\)

Kết hợp với đkxđ => 0 < x < 9

Xem chi tiết
Darlingg🥝
15 tháng 1 2020 lúc 15:48

Cảm ơn chú đã kb giờ thì t sẽ làm hộ chú :V

\(P=\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

\(P=\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab}-1\right)}+\frac{\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}-\frac{ab-1}{ab-1}\right]\)

\(:\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)}{\left(\sqrt{ab}+1\right)\left(\sqrt{ab-1}\right)}\right]-\frac{\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}+\frac{ab-1}{ab-1}\)

\(P=\frac{\left(a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1\right)+\left(ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}\right)-\left(ab-1\right)}{ab-1}\)

\(:\frac{\left(a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1\right)-\left(ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}\right)+\left(ab-1\right)}{ab-1}\)

\(P=\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{ab-1}\)

\(:\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{ab-1}\)

\(P=\frac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}:\frac{-2\sqrt{a}-2}{ab-1}\)

\(P=\frac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{ab-1}.\frac{ab-1}{-2\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)

P/s: :V bài này tính toán kĩ nhưng chưa chắc đúng :VVVV

Khách vãng lai đã xóa

Mr.Fuff cảm ơn ạ >_<!!!!

Khách vãng lai đã xóa
Hạc Phởn
Xem chi tiết
Thanh Tùng Phạm Văn
7 tháng 12 2016 lúc 21:19

mi tích tau tau tích mi xong tau trả lời nka

 việt nam nói là làm

Lipid Alpha
Xem chi tiết

C= \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)          -  \(\frac{2}{\sqrt{ab}}\)\(\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\)

\(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)-   \(\frac{2}{\sqrt{ab}}\).: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{ab}\)

\(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)-\(\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

=1

#mã mã#

Dragon Boy
Xem chi tiết
nguyen thanh binh
Xem chi tiết
poke đại chiến
10 tháng 2 2019 lúc 12:43

cho S=1-3+32-33+...+398-399                                                                                                                                       

a. Chứng minh: S chia hêt cho 20

b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1

chịu