tìm số nguyên x, biết rằng:
(x-2)2 + 5 (x - 2) = 0
tìm các số nguyên x biết rằng: (x^2 - 1).(x^2 - 5) < 0
Ta có: \(\left(x^2-1\right)\left(x^2-5\right)< 0\)
\(\Rightarrow\left(x^2-1\right)\)và \(\left(x^2-5\right)\)trái dấu
Mà \(\left(x^2-1\right)>\left(x^2-5\right)\)
\(\Rightarrow\orbr{\begin{cases}x^2-1>0\\x^2-5< 0\end{cases}\Rightarrow\orbr{\begin{cases}x^2>1\\x^2< 5\end{cases}}}\)
\(\Rightarrow1< x^2< 5\)
\(\Rightarrow x\in\left\{\pm2\right\}\)
hok tốt!!
Bài 4. Tìm số nguyên x , biết :
a/ x(x - 3) < 0
c/ (x + 2)(x + 5) < 0
b/ x(x - 3) > 0
d/ (x + 2)(x + 5) > 0
Bài 5. Tìm số nguyên , biết :
a/ ( n + 3 ) ( n² + 1 ) = 0
b/ ( n - 1 ) ( n² - 4 ) = 0
Bài 6. Tìm các số nguyên x và y , biết rằng : ( x + 1 )^2 + ( y - 1 )^2 = 0
a) Tìm x, biết: 4/-5 < x/5 nhỏ hơn hoặc bằng 0,với x là các số nguyên
b) Tìm phân số a/b,biết rằng : (-2/3 . a/b - 32) : 2/3=90
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
Tìm các số nguyên x và y (y khác 0) biết rằng x/5-1/y=1/2
Theo bài ra ta có : \(\frac{x}{5}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{xy-5}{5y}=\frac{1}{2}\)
\(\Rightarrow2\left(xy-5\right)=5y\)
\(\Rightarrow2xy-10-5y=0\)
\(\Rightarrow y\left(2x-5\right)=10\)
mà 10 = 2.5 = (-2).(-5) = 1.10 = (-1).(-10)
Lập bảng xét 8 trường hợp :
x | 10 | 1 | 2 | 5 | -2 | -5 | -1 | -10 |
2x - 5 | 7,5 | 3(tm) | 3,5 | 5(tm) | -1,5 | 0(tm) | 2(tm) | -2,5 |
y | 1 | 10 | 5 | 2 | -5 | -2 | -10 | -1 |
Vậy các cặp (x;y) thỏa mãn bài toán là : (3;10) ; (5;2) ; (0;-2) ; (2;-10)
Tìm các số nguyên x và y (y khác 0) biết rằng x/5-1/y=1/2
x/5-1/y=1/2
=>xy-5/5y=1/2(quy đồng nha)
=>2(xy-5)=5y(nhân chéo)
=>2xy-10=5y
=>2xy-5y=10
=>y(2x-5)=10
=>y,(2x-5)t thuộc Ư(10)={-1,1,-2,2,-5,5,-10,10}
Nên ta có bảng:
(2x-5) | -1 | 1 | -2 | 2 | -10 | 10 | -5 | 5 |
y | -10 | 10 | -5 | 5 | -1 | 1 | -2 | 2 |
x | 2 | 3 | loại | loại | loại | loại | 0 | 5 |
Vậy:có các cặp (x, y) là (2,-10),(3,10),(0,-2),(5,2)
c1,tìm x,y số nguyên biết 2xy-x-y=2
c2,tìm đa thức M biết rằng M+(5x^2-2xy)=6x^2+9xy-y^2 tính giá trị của M khi x, y thỏa mãn (2x-5)^2018+(3y+4)^2<0 hoặc =0
cho số nguyên n > 1, chứng minh rằng n^n - n^2 +n -1 chia hết cho (n-1)^2
tìm x biết: (x-2)(x^2 + 2x + 7) + 2(x^2 - 4) - 5(x-2)=0
tìm số nguyên x biết (x^2+5):(x^2-25)=0
b,(x^2-5):(x^2-25)<0
a, => x^2+5 = 0
=> x^2=-5 ( vô lí vì x^2 >= 0)
=> ko tồn tại x tm bài toán
b, Vì x^2-5 > x^2-25
Mà (x^2-5): (x^2-25) < 0
=> x^2-5 >0 và x^2-25 <0
=> 5 < x^2 < 25
=> \(x>\sqrt{5}\)hoặc \(x< -\sqrt{5}\) và -5 < x < 5
=> -5 < x < -\(\sqrt{5}\)hoặc \(\sqrt{5}\)< x < 5
k mk nha