Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
♡ᏂàᏁッᏁᏂi♡
Xem chi tiết
I don
3 tháng 9 2018 lúc 9:03

\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}...\cdot\frac{98}{99}\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

#

Ngoc Anhh
3 tháng 9 2018 lúc 9:04

\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{98}{99}.\frac{99}{100}\)

\(=\frac{1.2.3.4.....98.99}{2.3.4.5.....99.100}\)

\(=\frac{1}{100}\)

Nhật Linh Nguyễn
3 tháng 9 2018 lúc 9:06

Ta có :\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\).

\(\frac{1\cdot2\cdot3\cdot4\cdot...\cdot98\cdot99}{2\cdot3\cdot4\cdot5\cdot...\cdot99\cdot100}=\frac{1}{100}\).

Quang
Xem chi tiết
Sky Ciel
31 tháng 3 2017 lúc 12:24

quá dễ

Xem chi tiết
๓เภђ ภوยץễภ ђảเ
27 tháng 9 2020 lúc 19:34

a,Đặt  \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)

 \(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)

\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{300}\)

b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)

Khách vãng lai đã xóa
๓เภђ ภوยץễภ ђảเ
27 tháng 9 2020 lúc 19:39

c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\)           (dấu . là dấu nhân)

Khách vãng lai đã xóa

thanks

Khách vãng lai đã xóa
Cao Thành Long
Xem chi tiết
mai thị hà vi
Xem chi tiết
Shiro Suu
Xem chi tiết
ganghochanh
22 tháng 11 2017 lúc 21:01

sfdsa

nguyen tien dung
22 tháng 11 2017 lúc 21:07

VÌ 1/1.1/3.......1/99=2/51.2/52.........2/100

VÀ   2/51.2/52.....2/100=1/1.1/3.......1/99

SUY RA BẰNG NHAU

Việt NAm
Xem chi tiết
Kudo Shinichi
5 tháng 4 2017 lúc 12:35

ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)

ta gọi B là biểu thức thứ2

\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)

\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)

\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)

\(\Rightarrow x=1\)

mk nghĩ vậy bạn ạ, mk mong nó đúng

Phúc
Xem chi tiết
Sorry
17 tháng 3 2016 lúc 20:24

Ta có: 

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)

Trần Thanh Huyền
Xem chi tiết
minh trần lê
19 tháng 3 2019 lúc 21:42

biết làm bài 1 thôi

\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)

\(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)

lượt bỏ đi còn :

\(\frac{1000}{2}=500\)