\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}...\frac{99}{100}\)
Tháng này mình không online thường xuyên nữa, bạn nào muốn nói chuyện vs mk thì vào chức năng chát
\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{98}{99}\times\frac{99}{100}\)
\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}...\cdot\frac{98}{99}\cdot\frac{99}{100}\)
\(=\frac{1}{100}\)
#
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{98}{99}.\frac{99}{100}\)
\(=\frac{1.2.3.4.....98.99}{2.3.4.5.....99.100}\)
\(=\frac{1}{100}\)
Ta có :\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\).
= \(\frac{1\cdot2\cdot3\cdot4\cdot...\cdot98\cdot99}{2\cdot3\cdot4\cdot5\cdot...\cdot99\cdot100}=\frac{1}{100}\).
Chứng minh rằng \(\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times\frac{7}{8}\times...\times\frac{99}{100}< 0,01\)
1.Tính nhanh
a,\(\frac{1}{1\times4}+\frac{1}{4\times7}+............+\frac{1}{97\times100}\)
b,\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...........\times\frac{99}{100}\)
c,\(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...........\times\frac{99}{100}\)
d,\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times............\times\left(\frac{1}{99}+1\right)\)
e,\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times..........\times\left(1-\frac{1}{100}\right)\)
a,Đặt \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)
\(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)
\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{300}\)
b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)
c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\) (dấu . là dấu nhân)
Cho biểu thức A= \(\frac{2}{1}\times\frac{4}{3}\times\frac{6}{5}\times\frac{8}{7}\times\frac{10}{9}\times...\times\frac{100}{99}\)Chứng minh rằng 12<A<13
\(\frac{1}{15}< \frac{1}{2}\times\frac{3}{4}\times...\times\frac{99}{100}< \frac{1}{10}\)
Chứng tỏ rằng: \(\frac{1}{1}\times\frac{1}{3}\times\frac{1}{5}\times.....\times\frac{1}{99}=\frac{2}{51}\times\frac{2}{52}\times\frac{2}{53}\times.....\times\frac{2}{100}\)
VÌ 1/1.1/3.......1/99=2/51.2/52.........2/100
VÀ 2/51.2/52.....2/100=1/1.1/3.......1/99
SUY RA BẰNG NHAU
tìm x biết
\(x+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times....\times\frac{100}{99}+\frac{9}{110}\)
ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)
ta gọi B là biểu thức thứ2
\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)
\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)
\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)
\(\Rightarrow x=1\)
mk nghĩ vậy bạn ạ, mk mong nó đúng
Tính:
\(A=\frac{1^2}{1\times2}\times\frac{2^2}{2\times3}\times\frac{3^2}{3\times4}\times...\times\frac{99^2}{99\times100}\times\frac{100^2}{100\times101}\)
Ta có:
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)
Tìm tích:
1.\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times...\times\left(\frac{1}{999}+1\right)\)
2.\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1000}-1\right)\)
3.\(\frac{3}{2^2}\times\frac{8}{3^2}\times\frac{15}{4^2}\times...\times\frac{99}{10^2}\)
biết làm bài 1 thôi
\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)
= \(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)
lượt bỏ đi còn :
\(\frac{1000}{2}=500\)