hãy chứng minh: nếu a và c cùng dấu thì đa thức a(x+2003)2+c vô nghiệm
Cho a,b,c là các số thực và \(a\ne0\). Chứng minh rằng nếu đa thức \(f\left(x\right)=a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c\) vô nghiệm thì phương trình \(g\left(x\right)=ax^2+bx-c\) có hai nghiệm trái dấu
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
cho đa thức f(x)=a(x-2009)2+b
a, tìm a và b biết f(2009)=-15 và f(2020)=348
b, tìm nghiệm của đa thức f(x) với a,b vừa tìm được
c, CM nếu a, b cùng dấu thì f(x) vô nghiệm
Chứng minh rằng: “Nếu phương trình bậc hai : ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu”. Một học sinh đã làm như sau:
Bước 1: Giả sử phương trình vô nghiệm và a, c cùng dấu.
Bước 2: Với điều kiện a, c trái dấu ta có a.c > 0 suy ra Δ = b2 - 4ac > 0.
Bước 3: Nên phương trình có hai nghiệm phân biệt, điều này mâu thuẫn với giả thiết phương trình vô nghiệm.
Bước 4: Vậy phương trình vô nghiệm thì a, c phải cùng dấu.
Lập luận trên sai từ bước nào?
A. Bước 1
B. Bước 2
C. Bước 3
D. Bước 4.
Đáp án: A
Bước 1 sai vì giả sử phản chứng sai, phải giả sử phương trình vô nghiệm và a, c trái dấu.
Chứng tỏ rằng nếu a và c cùng dấu thì đa thức: f(x)= a(x - 2003)^2 + c vô nghiệm
*)Xét a và c cùng dương thì:
\(\left(x-2003\right)^2\ge0\)
\(\Rightarrow a\left(x-2003\right)^2\ge0\)
\(\Rightarrow a\left(x-2003\right)^2+c>0\)
*)Xét a và c cùng âm thì:
\(\left(x-2003\right)^2\ge0\)
\(\Rightarrow a\left(x-2003\right)^2\le0\)
\(\Rightarrow a\left(x-2003\right)^2+c< 0\)
Chứng minh a và c khác dấu thì đa thức f(X) vô nghiệm
f(x) = -a (x - 3)2 + c
@...65%,,7788*7.,......................
nói chung a >c
đúng ko
đúng ko
chứng tỏ rằng nếu a và c cùng dấu thì đa thức:
f(x) = \(a\left(x-2003\right)^2\) vô nghiệm
vì \(\left(x-2003\right)^2\ge\) 0 với mọi x
nên ta có hai trường hợp:
TH1: nếu a và c cùng là số âm thì \(a\left(x-2003\right)^2+c\le c< 0\)
\(\Rightarrow\)f(x) vô ngiệm.
TH2: nếu a và c cùng là số dương thì \(a\left(x-2003\right)^2+c\ge c>0\)
\(\Rightarrow\)f(x) vô nghiệm.
vậy nếu a và c cùng dấu thì đa thức f(x) vo nghiệm
mình chép thiếu, đề bài là:
chứng tỏ rằng nếu a và c cùng dấu thì đa thức:
f(x) = \(a\left(x-2003\right)^2+c\)1. Cho đa thức A(x) = ax2 + bx +c (với a,b,c là các hằng số). Chứng minh rằng
a) Nếu a+b+c=0 thì x=1 là một nghiệm của đa thức A(x)
b) Nếu a-b+c=0 thì x=-1 là một nghiệm của đa thức A(x)
2. Cho hai đa thức A(x) và Q(x) đều có nghiệm. Có thể khẳng định được rằng đa thức P(x) + Q(x) luôn có nghiệm hay không? Minh họa cho câu trả lời của em bằng một ví dụ.
3. Cho hai đa thức M(x) và N(x) có cùng một nghiệm. Có thể khẳng định được rằng đa thức M(x) + N(x) luôn có nghiệm hay không? Cho ví dụ minh họa cho câu trả lời của em.
Giúp mình với, mình cần gấp.
1. Cho đa thức A(x) = ax2 + bx +c (với a,b,c là các hằng số). Chứng minh rằng
a) Nếu a+b+c=0 thì x=1 là một nghiệm của đa thức A(x)
b) Nếu a-b+c=0 thì x=-1 là một nghiệm của đa thức A(x)
2. Cho hai đa thức A(x) và Q(x) đều có nghiệm. Có thể khẳng định được rằng đa thức P(x) + Q(x) luôn có nghiệm hay không? Minh họa cho câu trả lời của em bằng một ví dụ.
3. Cho hai đa thức M(x) và N(x) có cùng một nghiệm. Có thể khẳng định được rằng đa thức M(x) + N(x) luôn có nghiệm hay không? Cho ví dụ minh họa cho câu trả lời của em.
Giúp mình với, mình cần gấp.
Cho đa thức f(x)=ax+b và đa thức g(x)=bx+a. Chứng minh rằng nghiệm của 2 đa thức luôn luôn cùng dấu
Gọi x1,x2 lần lượt là nghiệm của 2 đa thức f(x) và g(x)
Ta có:\(\hept{\begin{cases}ax_1+b=0\Rightarrow x_1=-\frac{b}{a}\\bx_2+a=0\Rightarrow x_2=-\frac{a}{b}\end{cases}}\)
\(\Rightarrow x_1x_2=-\frac{b}{a}.-\frac{a}{b}=1>0\)
Hay x1,x2 cùng dấu(đpcm)
\(P\left(x\right)=ax+b\left(a,b\ne0\right)\)
\(Q\left(x\right)=bx+a\left(a,b\ne0\right)\)
Nghiệm của \(P\left(x\right)\)là số dương
=>\(ax+b=0=>x=-\frac{b}{a}\)
tương tự , Nghiệm của \(Q\left(x\right)\)là số dương
=> \(bx+a=0=>x=-\frac{a}{b}\)
=> \(\frac{a}{b}>0,\frac{b}{a}>0\left(dpcm\right)\)