Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn ngọc linh
Xem chi tiết
nguyễn ngọc linh
20 tháng 7 2015 lúc 10:30

chính xác 100/100

 

Hoàng Tử của dải Ngân Hà
9 tháng 8 2016 lúc 9:48

d) \(10^n+72n-1\)\(=100...0-1+72n\)

=\(999...9-9n+81n\)

     n chữ số 9

=\(9.\left(111...1-n\right)+81n\)

VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9

mà 81n chia hết 9 => 10n + 72n -1 chia hết 9

b) \(10^n+18n-1\)

<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)

          n

<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)

             n

<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)

               n

<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)

<=> \(9.9k+27n\)chia hết \(27\)

<=> \(81k+27n\)chia hết \(27\)

Sky _ Nguyễn
9 tháng 8 2016 lúc 9:51

a) \(10^{28}+8\)chia hết cho 72

\(\Rightarrow10^{28}:9\)dư 1

\(\Rightarrow8:9\)dư 8

\(\Rightarrow1+8=9\)chia hết cho 9

\(\Rightarrow10^{28}+8\)chia hết cho 9 ( 1 )

\(10^{28}\)chia hết cho 8 ( vì 3 sớ tận cùng là 000 chia hết cho 8 )

8 chia hết cho 8

\(\Rightarrow10^{28}+8\)chia hết cho 8 ( 2 )

Từ ( 1 ) và ( 2 ) kết hợp với UCLN ( 8 ; 9 ) = 1 => ĐPCM

b) \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}.\left(2^4+1\right)=2^{20}.17\)chia hết cho 7 => ĐPCM

c) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

d

Công Chúa Huyền Trang
Xem chi tiết
Phạm Khánh Linh
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
Frieza
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
Nguyễn Quốc Khánh
10 tháng 12 2015 lúc 22:00

Dùng pp Quy nạp toán học Hoàng ak