Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Edward Williams
Xem chi tiết
Huyền thoại Amaya
Xem chi tiết
Minh  Ánh
12 tháng 11 2016 lúc 20:20

ta có: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{2}{c}=\frac{b+a}{ab}\)

\(\Rightarrow2ab=c\left(a+b\right)\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

tíc mình nha

Vũ Thu Huyền
Xem chi tiết
Phạm Thị Hà
Xem chi tiết
Nguyễn Văn Tuấn Anh
7 tháng 7 2019 lúc 9:56

a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\) 

  \(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\) 

 \(a^2+b^2+c^2-ab-ac-bc=0\) 

\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) 

 \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\) 

\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\) 

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) 

\(\Rightarrow a=b=c\left(đpcm\right)\)

Hi Mn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2023 lúc 12:06

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)

\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)

\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)

\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Vũ Thị Cẩm Tú
Xem chi tiết
Nguyễn Bá Long Nhật
Xem chi tiết
Ngô Gia Miên
28 tháng 3 2020 lúc 14:46

Đáp án:

Cho a,b,c thỏa mãn:

2ab(2b-a)-2ac(c-2a)-2bc(b-2c)= 7abc

CMR:Tồn tại 1số bằng 2 số kia.

Giải thích các bước giải:

Khách vãng lai đã xóa
Lê Kim An
Xem chi tiết
Peter Parker
Xem chi tiết