Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Bao
Xem chi tiết
minhthành
Xem chi tiết
Đỗ Tiến Tuân
Xem chi tiết
Minh Tú sét boi
7 tháng 1 2023 lúc 23:07

\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-c}{2016-2018}=\dfrac{a-b}{2016-2017}=\dfrac{b-c}{2017-2018}\)

\(\rightarrow\dfrac{a-c}{-2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\)

\(\rightarrow a-c=2\cdot\left(a-b\right)=2\cdot\left(b-c\right)\)

\(\rightarrow\left(a-c\right)^3=\left[2\cdot\left(a-b\right)\right]^2\cdot2\cdot\left(b-c\right)\)

\(\Rightarrow\left(a-c\right)^3=8\cdot\left(a-b\right)^2\cdot\left(b-c\right)\)

Nguyễn Tuấn Khôi
Xem chi tiết
Vũ Thị Minh Nguyệt
11 tháng 7 2017 lúc 8:55

Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2=0-2\cdot0\)

\(\Rightarrow a=b=c=0\)

Thế kết quả vào: \(\left(0-2017\right)^{2018}+\left(0-2017\right)^{2018}-\left(0+2017\right)^{2018}=2017^{2018}\)

Ps: \(\left(-2017\right)^{2018}=2017^{2018}\)

Thanh Nguyenthi
Xem chi tiết
Nguyễn Tuyền
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2019 lúc 12:45

\(a;b;c\ne0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}=\frac{1}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\\ab=-c\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\ab+ac+bc+c^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\\left(a+c\right)\left(b+c\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\)

\(M=\left(a^{2015}+b^{2015}\right)\left(a^{2017}+b^{2017}\right)\left(a^{2019}+b^{2019}\right)\)

- Nếu \(a+b=0\Rightarrow M=0\)

- Nếu \(\left[{}\begin{matrix}a+c=0\\b+c=0\end{matrix}\right.\) thì ko tính được giá trị cụ thể của M

Khi đó \(\left[{}\begin{matrix}M=\left(2018^{2015}+b^{2015}\right)\left(2018^{2017}+b^{2017}\right)\left(2018^{2019}+b^{2019}\right)\\M=\left(2018^{2015}+a^{2015}\right)\left(2018^{2017}+a^{2017}\right)\left(2018^{2019}+a^{2019}\right)\end{matrix}\right.\)

Trương Việt Anh
Xem chi tiết
Lê Gia Bảo
8 tháng 8 2017 lúc 9:40

Sửa đề: Chứng minh: \(4\left(a-b\right)\left(b-c\right)=4\left(b-c\right)^2\)

Đặt \(\dfrac{a}{2017}=\dfrac{b}{2018}=\dfrac{b}{2019}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=2017k\\b=2018k\\c=2019k\end{matrix}\right.\)

VT: \(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)\)

\(=4.\left(-k\right).\left(-k\right)=4k^2\) (1)

VP: \(4\left(b-c\right)^2=4\left(2018k-2019k\right)^2=4k^2\) (2)

Từ (1) (2), suy ra:

\(4\left(a-b\right)\left(b-c\right)=4\left(b-c\right)^2\)\(\Rightarrow\) (đpcm)

~ Học tốt ~

Hoàng Quốc Tuấn
Xem chi tiết
Nguyễn Ngọc Gia Hân
Xem chi tiết