a/2017=b/2018=c/2019
CM
4(a-b)(b-c)=(b-c)^2
Cho a+b = 0 và a*b+ a*c+b*c=0 Tính giá trị của biểu thức M = (a -2018)^2018+(b-2017)^2018-(c+2017)^2018
9cho a,b,c thuộc N thoả mãn a/2017+ b/2018+ c/2019 = a+b+c/((2017)^2018)2019
Cmr a^2020+ b^2020+ c^2020 =0
cho a,b,c thỏa mãn : a/2016=b=2017=c/2018
CMR: ( a-c )^3=8(a-b)^2(b-c)
\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-c}{2016-2018}=\dfrac{a-b}{2016-2017}=\dfrac{b-c}{2017-2018}\)
\(\rightarrow\dfrac{a-c}{-2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\)
\(\rightarrow a-c=2\cdot\left(a-b\right)=2\cdot\left(b-c\right)\)
\(\rightarrow\left(a-c\right)^3=\left[2\cdot\left(a-b\right)\right]^2\cdot2\cdot\left(b-c\right)\)
\(\Rightarrow\left(a-c\right)^3=8\cdot\left(a-b\right)^2\cdot\left(b-c\right)\)
Cho a+b+c=0 và ab+ac+bc=0
Tính giá trị của P=(a-2017)^2018+(b-2017)^2018-(c+2017)^2018
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2=0-2\cdot0\)
\(\Rightarrow a=b=c=0\)
Thế kết quả vào: \(\left(0-2017\right)^{2018}+\left(0-2017\right)^{2018}-\left(0+2017\right)^{2018}=2017^{2018}\)
Ps: \(\left(-2017\right)^{2018}=2017^{2018}\)
Cho a+b+c=2018,1/a+1/b+1/c=1/2018.Tính a^2017+b^2017+c^2017
cho a+b+c =2018
1/a+1/b+1/c =1/2018
tính (a^2015+b^2015)(a^2017+b^2017)(a^2019+b^2019)
\(a;b;c\ne0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}=\frac{1}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b=0\\ab=-c\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\ab+ac+bc+c^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\\left(a+c\right)\left(b+c\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\)
\(M=\left(a^{2015}+b^{2015}\right)\left(a^{2017}+b^{2017}\right)\left(a^{2019}+b^{2019}\right)\)
- Nếu \(a+b=0\Rightarrow M=0\)
- Nếu \(\left[{}\begin{matrix}a+c=0\\b+c=0\end{matrix}\right.\) thì ko tính được giá trị cụ thể của M
Khi đó \(\left[{}\begin{matrix}M=\left(2018^{2015}+b^{2015}\right)\left(2018^{2017}+b^{2017}\right)\left(2018^{2019}+b^{2019}\right)\\M=\left(2018^{2015}+a^{2015}\right)\left(2018^{2017}+a^{2017}\right)\left(2018^{2019}+a^{2019}\right)\end{matrix}\right.\)
a/2017=b/2018=c/2019
CM
4(a-b)(b-c)=(b-c)^2
Sửa đề: Chứng minh: \(4\left(a-b\right)\left(b-c\right)=4\left(b-c\right)^2\)
Đặt \(\dfrac{a}{2017}=\dfrac{b}{2018}=\dfrac{b}{2019}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=2017k\\b=2018k\\c=2019k\end{matrix}\right.\)
VT: \(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)\)
\(=4.\left(-k\right).\left(-k\right)=4k^2\) (1)
VP: \(4\left(b-c\right)^2=4\left(2018k-2019k\right)^2=4k^2\) (2)
Từ (1) và (2), suy ra:
\(4\left(a-b\right)\left(b-c\right)=4\left(b-c\right)^2\)\(\Rightarrow\) (đpcm)
~ Học tốt ~
Cho a,b,c thỏa mãn\(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\) .
Tính M=\(\frac{a^{2017}+b^{2018}+c^{2918}}{a^{2017}b^{2018}c^{2019}}\)
Cho a ; b \(\ne\) 0 tm : \(\dfrac{ab+1}{b}=\dfrac{bc+1}{c}=\dfrac{ca+1}{a}\) . Cm : \(a^{2017}+\dfrac{1}{b^{2018}}=b^{2017}+\dfrac{1}{c^{2018}}=c^{2017}+\dfrac{1}{a^{2018}}\)