Cho các hàm số
y=x2 (P1)
y=\(\frac{-x^2}{2}\) (P2)
Chứng minh A(1;1) và B(2;4) thuộc (P1) . Tìm vị trí điểm M để diện tích tam giác ABM nhỏ nhất
Cho hai parabol P 1 : y = x 2 + 3 x - 2 và P 2 : y = x 2 + 5 x + 4 . Phép tịnh tiến theo v → = a ; b biến ( P 1 ) thành ( P 2 ) thì a+b bằng:
A. 3
B. -3
C. -1
D. 1
Cho hai parabol P 1 : y = x 2 + 3 x − 2 và P 2 : y = x 2 + 5 x + 4 . Phép tịnh tiến theo v → = a ; b biến P 1 thành P 2 thì a+b bằng
A. 3
B. -3
C. -1
D. 1
Bài 1: Cho hàm số Y= f(x)=k.x ( k là hằng số , k khác 0). Chứng minh rằng:
a, f(10x) =10.f(x)
b, f(x1 + x2 ) = f(x1) + f(x2)
Bài 2: cho các hàm số y=2x và y= \(\frac{18}{x}\)không vẽ đồ thị . Tìm tọa độ giao điểm của hàm số đã cho.
Bài 1: Cho hàm số Y= f(x)=k.x ( k là hằng số , k khác 0). Chứng minh rằng:
Giải thích các bước:
a)f(10x) = 10f(x)
ta có:
y= f (x) =kx
=>f(10x) = k(10x) =10kx (*)
=>10f(x) = 10kx (**)
Từ (*) và (**)
=> f(10x) =10f(x)
=>đpcm
b)
f(x1 - x2) = k.(x1 - x2) (1)
f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)
Từ (1) và (2) => đpcm
Giải thích các bước:
a)f(10x) = 10f(x)
ta có:
y= f (x) =kx
=>f(10x) = k(10x) =10kx (*)
=>10f(x) = 10kx (**)
Từ (*) và (**)
=> f(10x) =10f(x)
=>đpcm
b)
f(x1 - x2) = k.(x1 - x2) (1)
f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)
Từ (1) và (2) => đpcm
cho 2 số nguyên tố liên tiếp p1 và p2 biet p1 lon hon p2 . Chứng minh p1+p2/2 là hợp số (p1,p2 lớn hơn 2)
Cho A p1 x.p2 y...pn z. trong đó A 1 , p1,p2,..pn là các số nguyên tố , x,y,.z thuộc N số lượng các ước của số A là
\(A=p_1^xp_2^y...p_n^z\)
Tổng số lượng các ước số của \(A\)là: \(\left(x+1\right)\left(y+1\right)...\left(z+1\right)\).
Cho số tự nhiên n lớn hơn hoặc bằng 2. gọi p1, p2, ... ,pn là những số nguyên tố sao cho pn nhỏ hơn hoặc bằng n + 1. đặt A = p1 . p2 . ... . pn. Chứng minh rằng trong dãy số các số nguyên tố liên tiếp A + 2, A +3, ... , A + (n + 1) không chứa 1 số nguyên tố nào
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Cho P1 và P2 là 2 số nguyên tố lẻ liên tiếp (P1 > P2)
Chứng minh rằng P1 + P2 chia 2 là hợp số
Giả sử (p1+p2):2 là số nguyên tố, Khi đó ta có p1+p2=2d với d nguyên tố
Vì p1, p2 là hai số nguyên tố liên tiếp, và p1 > p2 nên từ p1+p2=2d ⇒ p1 > d > p2 như vậy giữa p1, p2 còn số d là số nguyên tố (mâu thuẫn với giả thuyết) ⇒ (p1+p2);2 là hợp số.
Hoặc:
p2+1 là chẵn
=> (p1+p2)/2 là chẵn
=> Nếu nó là SNT thì p2+1 phải là số tự nhiên.
Mà nó lại là số chẵn
=> p2+1 = 2
=> p2=1 (k phải snt)
Vậy (p1+p2)/2 là hợp số
ta có :
số chia hết cho 2 phải là số chẵn
số nào chia cho 2 cũng có thương là số chẵn ( khác 2 )
=> (P1 + P2 ) : 2 = SỐ CHĂN CHIA HẾT 2 => SỐ ĐÓ CÓ TRÊN 2 ƯỚC
=> ĐPCM
Vì p1 và p2 là 2 số nguyên tố lẻ liên tiếp => p1+p2 > 3 +5 = 8 và p1 + p2 chia hết cho 2
=>( p1+p2) :2 > 4 và p1+p2) :2 chia hết cho 2
=>( p1+p2) :2 là hợp số
=> đpcm
Cho (p) y=4x2
a)Gọi (P1) là đường có được khi tịnh tiến (P) lên trên 4 đơn vị . (P1) là đồ thị của hàm số nào?
b) Gọi (P2) là đường khi tịnh tiến (P) sang phải 2 đơn vị. (P2) là đồ thị của hàm số nào ?
giúp e vs. E mới học
Hàm \(y=f\left(x\right)\) có đồ thị (C):
\(\Rightarrow\) Khi tịnh tiến lên a đơn vị ta sẽ được đồ thị hàm \(y=f\left(x\right)+a\)
Khi tịnh tiến xuống dưới a đơn vị ta được đồ thị hàm \(y=f\left(x\right)-a\)
- Khi tịnh tiến sang phải a đơn vị ta sẽ được đồ thị hàm \(y=f\left(x-a\right)\)
- Khi tịnh tiến sang trái a đơn vị sẽ được đồ thị hàm \(y=f\left(x+a\right)\)
Do đó:
Khi tịnh tiến (P) lên 4 đơn vị ta được đồ thị hàm \(y=4x^2+4\)
Khi tịnh tiến (P) sang phải 2 đơn vị ta được đồ thị hàm: \(y=4\left(x-2\right)^2=4x^2-16x+16\)
cho x, y là các số nguyên dương thỏa mãn \(\frac{x^2-1}{2}=\frac{y^2-1}{3}\) .chứng minh rằng x2 -y2 chia hết cho 40
Giả thiết đã cho có thể viết lại được thành 3x2-2y2=1(1)
Từ đây, ta có x lẻ nên x2chia 8 dư 1 => 3x2 chia 8 dư 3
Từ đo ta có 2y2 chia 8 dư 2
=> y2 chia 8 dư 1. Do đó: x2-y2 chia 8 (2)
Tiếp theo ta sẽ chứng minh x2-y2chia hết cho 5 (3)
Chú ý rằng số dư của a2 (a thuộc Z) khi chia cho 5 là 0;1 và 4
Nếu y2 chia 5 thì từ (1) ta có 3x2 chia 5 dư 1, mâu thuẫn do só dư của 3x2 khi chia 5 chỉ có thể là 0;3;2Nếu y2 chia 5 dư 4 thì từ (1) ta có 3x2 chia 5 dư 4, mâu thuẫnDo đó ta phải có y2 chia 5 dư 1. Khi đó từ (1) ta cũng suy ra x2 chia 5 dư 1. Dẫn đến x2-y2 chia hết cho 5Từ (2) và (3) với chú ý (5;8)=1 ta thu được x2-y2 chia hết cho 40 (đpcm)