CMR các số sau nguyên tố cùng nhau 2n+5;3n+7 \(\left(n\in N\right)\)
ai làm dc cho 1like nha
CMR với mọi nEN thì các số sau là nguyên tố cùng nhau
a) 2n + 5 và 3n + 7
b) 2n +1 và 14n + 5
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
câu b tương tự
CMR các cặp số sau nguyên tố cùng nhau
a.(2n+1) và 6n+5
b.(3n+2) và 5n+3
Bài 1 : CMR các số sau là 2 số nguyên tố cùng nhau
a) n+2 và 2n+3
b)4n+5 và 2n +3
c) 18n + 3 và 21n +7
Gọi d = ƯCLN(2n + 1; 3n + 1)
⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d ⇒⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d
⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.
bạn làm giống thế này nhé xin lỗi vì mình ko cho kq nhưng bạn phải tự làm mới hiểu được
CMR hai số sau nguyên tố cùng nhau
a) 3n + 4 và 2n + 3
b) 2n +11 và n + 5
a) Gọi ƯC(3n + 4; 2n + 3) = d
=> 3n + 4 ⋮ d => 2(3n + 4) ⋮ d hay 6n + 8 ⋮ d (1)
=> 2n + 3 ⋮ d => 3(2n + 3) ⋮ d hay 6n + 9 ⋮ d (2)
Từ (1) và (2) => 6n + 9 - 6n - 8 ⋮ d
hay 1 ⋮ d => d ∈ Ư(1) = 1
=> d = 1 hay ƯC(3n + 4; 2n + 3) = 1
Vậy 3n + 4 và 2n + 3 là 2 số nguyên tố cùng nhau
b) làm tương tự ( nhân 2 vào vế n + 5 )
a) Đặt (3n + 4, 2n + 3) = d
\(\Rightarrow\hept{\begin{cases}3n+4⋮d\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\\2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\end{cases}}\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
Gọi
ƯCLN(3n+4;2n+3)=d
Ta có:
3n+4 chia hết cho d
2n+3 chia hết cho d
=>3(2n+3)-2(3n+4) chia hết cho d
=>1 chia hết cho d
Vậy .........
Ta có:
2n+11 chia hết cho d
n+5 chia hết cho d
=>2n+11-2(n+5) chia hết cho d
=>1 chia hết cho d
Vậy.........
cmr với mọi x thuộc N* các cặp số sau là các cặp số nguyên tố cùng nhau
n và n+1
2n và 2n+2
CMR các cặp số sau đây là số nguyên tố cùng nhau:
a)a=n;b=2n+1
b)a=2n+1;b=3n+1
Gọi ƯCLN(a; b) là d. Ta có:
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d => 6n+2 chia hết cho d
=> 6n+3-(6n+2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(a; b) = 1
=> a và b nguyên tố cùng nhau (đpcm)
Gọi ƯCLN(a; b) là d. Theo đề bài, ta có:
n chia hết cho d => 2n chia hết cho d
2n+1 chia hết cho d
=> 2n+1-2n chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(a; b) = 1
=> a và b nguyên tố cùng nhau (đpcm)
CMR các số sau là số nguyên tố cùng nhau
a,2n+3 và 3n+4
b,n+7 và 2n+13
c,5n-8 và 3n-5
CMR 2 số sau là 2 số nguyên tố cùng nhau
a. n+5 và n+6
b. 2n+5 và n+2
a) Gọi ƯC(n+5;n+6) = d
=> n+5 ⋮ d và n+6 ⋮ d
=> n+6 - (n+5) ⋮ d
=> n+6-n-5 ⋮ d
=> 1 ⋮ d
=> d thuộc Ư(1) = 1
=> d = 1
=> ƯC(n+5;n+6) = 1
=> n+5 và n+6 là 2 số nguyên tố cùng nhau ( đpcm )
b) Gợi ý : nhân 2 vào n+2 ta có 2n+4 rồi làm tương tự câu a)
CMR 6n+5 và 2n+1 là số nguyên tố cùng nhau
CMR : các số sau đây nguyên tố cùng nhau :
a) Hai số tự nhiên liên tiếp
b) 2n + 5 và 3n + 7 ( n \(\inℕ\))
Gọi hai số liên tiếp lần lượt là a và a+1
Gọi UCLN(a, a+1)=d
=>a+1 chia hết cho d và a chia hết cho d
=> a+1-a=1 chia hết cho d vậy d=1
=> UCLN(a, a+1)=1
Vậy a và a+1 là hai số nguyên tố cùng nhau
Gọi UCLN của 2n+5 và 3n+7 là d
=> 2n+5 chia hết cho d và 3n+7 chia hết cho d
=> 6n+15 chia hết cho d và 6n+14 chia hết cho d
=> 6n+15-6n-14=1 chia hết cho d
vậy d=1
Thì UCLN(2n+5, 3n+7)=1
=> 2n+5 và 3n+7 là 2 số tự nhiên liên tiếp