1)Cho tam giác ABC(AB<AC)có đường cao AH.Gọi M,N,P lần lượt là trung điểm của các cạnh BC,CA,AB.
a)C/m NP là đường trung trực của đoạn AH
b)C/m tứ giác MNPH là hình thang cân.
2)Cho tam giác ABC có chu vi 20cm.Gọi O là một điểm nằm trong tam giác;D,E,F lần lượt là trung điểm của OA;OB;OC.Tính chu vi tam giác DEF.
3)Cho tam giác ABC có AM là trung tuyến.Gọi I là trung điểm của AM,gọi D là giao điểm của BI à AC.
a)C/m AD=1/2.DC
b)So sánh độ dài BD và ID.
1) Cho tam giác ABC có AB < AC. Đường cao AH. Gọi M,N,P lần lượt là trung điểm của các cạnh BC, AC, AB.
a/ chứng minh PN là đường trung trực của AH
b/ chứng minh tứ giác MNPH là hình thang
2) cho hình thang cân ABCD. có AB // CD. I là giao điểm của 2 đường chéo AC và BC. góc AIB = 60 độ. Gọi B' , C' lần lượt là hình chiếu của B, C trên AC và BD.
a/ Chứng minh A, B', C' = 1/2 BC
b/ gọi E là trung điểm BC, chứng minh tam giác EB'C' là tam giác đều
1) Cho tam giác ABC có AB < AC. Đường cao AH. Gọi M,N,P lần lượt là trung điểm của các cạnh BC, AC, AB.
a/ chứng minh PN là đường trung trực của AH
b/ chứng minh tứ giác MNPH là hình thang
2) cho hình thang cân ABCD. có AB // CD. I là giao điểm của 2 đường chéo AC và BC. góc AIB = 60 độ. Gọi B' , C' lần lượt là hình chiếu của B, C trên AC và BD.
a/ Chứng minh B', C' = 1/2 BC
b/ gọi E là trung điểm BC, chứng minh tam giác EB'C' là tam giác đều
cho tam giác abc có góc a khác 90 độ , góc b và c nhọn , đường cao ah . vẽ các điểm d,e sao cho ab là trung trực của hd , ac là trung trực của he . gọi i và k lần lượt là giao điểm của de với ab . a) Chứng minh : Tam giác ADE cân tại A b)tính số đo góc aic và akb
A = 100* => B^ = C^ = 40*
trên CA lấy điểm E sao cho CB = CE
C^ = 40* và MCB^ = 20* => MCB^ = MCE^ = 20*
=> ΔCBM = Δ CEM ( c.g.c) => MEC^ = MBC^ = 10*
BCE^ = 40* và Δ BCE cân tại C => CEB^ = (180* - 40*)/2 = 70*
=>MEB^ = 60* (1)
ΔCBM = Δ CEM => MB = ME (2)
(1) và (2) => BME là tam giác đều MB = BE (1*)
ABC^ = 40* ; MBC^ = 10* => ABM^ = 30*
ABE^ = CBE^ - ABC^ = 70* - 40* = 30*
=> ABM^ = ABE^ (2*)
(1*) và (2*) => ΔABM = Δ ABE (vì có thêm AB là cạnh chung)
=> AMB^ = AEB^ = 70*
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS. b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng. c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS.
b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng.
c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
Bài 1: Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH. E là giao điểm của BI và AC. Tính các độ dài AE và EC biết AH =12cm; BC = 18cm
Bài 2: Cho tam giác ABC (AC > AB), đường cao AH. Gọi D,E,K theo thứ tự là trung điểm của AB, AC,BC. CMR:
a, DE là đường trung trực của AH
b, DEKH là hình thang cân
Bài 3: Cho tam giác ABC cân tại A, đường cao AH. Gọi D là chân đường vuông góc kẻ từ H đến AC. I là trung điểm của HD.
a, Gọi M là trung điểm của CD. CMR: MI vuông góc với AH
b, CM: AI vuông góc với BD
Cho tam giác ABC (AB < AC < BC), đường cao AH. Gọi D, E, F lần lượt là trung điểm của các cạnh AB, BC và AC. Gọi I là giao điểm của DF và AE.
b) Chứng I là trung điểm của DF.
b) Ta có DF // BC (cmt) hay DI // BE; D là trung điểm của AD ⇒ I là trung điểm của AE và DI = BE/2
Trong ΔAEC có IF là đường trung bình nên IF = EC/2 mà EC = EB (gt) ⇒ IF = ID hay I là trung điểm của DF.
Cho tam giác ABC vuông tại A (AB<AC), AH là đường cao. Gọi D, E lần lượt là trung điểm của các cạnh AB và BC. Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của CM và AH. Chứng minh rằng:
a) ΔABC đồng dạng ΔHBA
b) AH²=BH.CH
c) N là trung điểm của AH