cho A=n mũ 3 + 3n mũ 2 + 2n . Chứng minh A chia hết cho 3
(mình đang cần gấp ha)
3+3 mũ 2+3 mũ 3+3 mũ 4+...+3 mũ 2012.chứng minh tổng chia hết cho 40
a+2+2 mũ 2 +2 mũ 3+...+2 mũ 2014 chứng minh a ko chia hết cho 7
giúp mình với nhé mình đang cần gấp.mn giúp mình đi mình xin cảm ơn các bạn nhé:))))
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
cho c 3 mũ 1 + 3 mũ 2 + ... + 3 mũ 100. chứng minh c không chia hết cho 13
giúp mình nhé mình đang cần gấp
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
Tìm số tự nhiên n sao cho
a ) 2n + 7 chia hết cho n-2
b ) n mũ hai + 3n + 4 chia hết cho n+3
MÌNH CẦN GẤP AI LÀM MÌNH LIKE CHO NÈ HUHU
a) 2n+7=n+n+9-2=(n+9)+(n-2)
Vì n-2 chia hết cho n-2 nên n+9 chia hết cho n-2
n+9=(n-2)+11
Vì n-2 chia hết cho n-2 nên 11 chia hết cho n-2
=>Ư(11)={1,11}
+ Nếu n-2=1 thì n=1+2=3
+ Nếu n-2=11 thì n=11+2=13
Vậy n E {3,13}
b) n2+3n+4=nxn+3n+4=n(n+3)+4
Vì n(n+3) chia hết cho n+3 nên 4 chia hết cho n+3
=>Ư(4)={1,2,4}
+Nếu n+3=1 thì n=1-3(không xảy ra vì n E N)
+Nếu n+3=2 thì n=2-3(không xảy ra vì n E N)
+Nếu n+3=4 thì n=4-3=1
Vậy n=1
Chứng minh 2n mũ 2 +3n+1/3n+2 tối giản mình đang cần gấp
\(A=\dfrac{2n^2+3n+1}{3n+2}\)
Gọi ước chung lớn nhất của \(2n^2+3n+1\) và \(3n+1\) là d \(\left(d\in N;d>0\right)\)
Suy ra
\(2n^2+3n+1⋮d\Rightarrow9\left(2n^2+3n+1\right)⋮d\\ \Leftrightarrow18n^2+27n+9⋮d\Leftrightarrow\left(18n^2+12n\right)+\left(15n+10\right)-1⋮d\\ \Leftrightarrow\left(3n+2\right)\left(9n+5\right)-1⋮d\)
Mà \(3n+2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\left(d>0;d\in N\right)\)
Suy ra phân số A tối giản.
Tìm n thuộc N để
a, n mũ 2 + 3n + 2 chia hết cho n + 1
b, 3n mũ 2+2n+1 chia hết cho 2n+3
GIÚP MÌNH VỚI NHÉ :D
a) Ta có:
\(n^2+3n+2\)
\(=n^2+n+2n+2\)
\(=n\left(n+1\right)+2\left(n+1\right)\)
\(=\left(n+1\right)\left(n+2\right)\)
Vì \(n+1⋮n+1\)
\(\Rightarrow n+2⋮n+1\)
Ta có:
\(n+2=n+1+1\)
Vì \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)
\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)
Vậy \(n=0\)
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 ,Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11 b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
cho mik hỏi câu này nữa a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết
b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 , Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11
b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
Bài 1:Tìm chữ số tận cùng
a,567 mũ 4 mũ 3 mũ 2
b,39 mũ 88 mũ 99
c,A=2+22+23+...+21000
Bài 2:Chứng minh
a,A=92n-1 chia hết cho 10(n\(\in\)N)
b,B=34n+1+2007 chia hết cho 10(n\(\in\)N)
c,24n+1+3 chia hết cho 5
d,D=84n+2+1 chia hết cho 5
Các bạn giúp mình nhanh nha mình đang cần rất gấp
Nhất là bạn phạm bá quang,giúp mình nha
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
a. n+3 chia hết cho n+1
b. 2n+7 chia hết cho n-3
c. 2n+9 chia hết cho n-3
d. 3n-1 chia hết cho 3-2n
bài 2
a.A=1+4+4 mũ 2+...+4 mũ 59 chia hết cho 5,21,85
b.B=5+5 mũ 3 +5 mũ 5 +...+5 mũ 203 chia hết cho 31
Ta có : n + 3 = (n + 1) + 2
Do n + 1\(⋮\)n + 1
Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}
Lập bảng :
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1
b) Ta có : 2n + 7 = 2.(n - 3) + 13
Do n - 3 \(⋮\)n - 3
Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ; 13}
Lập bảng :
n - 3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3
Bài 1 :
a) \(n+3⋮n+1\)
\(a+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b) c) d) tương tự
Bài 2 :
\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)
\(A=5+4^2\cdot5+...+4^{58}\cdot5\)
\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)
Còn lại : tương tự