Tìm GTLN của biểu thức:
a) A=\(x^2+y^2+z^2\) với \(-1\le x,y,z\le2\) và x+y+z\(\le3\)
Cho các số dương x,y,z thỏa mãn \(x+y+z\le3\). TÌm GTLN của biểu thức:
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Áp dụng bất đẳng thức Bunhia ta có :
\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)
tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)
Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)
\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)
dấu bằng xảy ra khi x=y=z=1
ủa bạn oi nó là \(\sqrt{2}x\)mà có phai\(\sqrt{2x}dau\)
Cho x, y, z thỏa mãn \(0\le x,y,z\le2\) và \(x+y+z=3\). Tìm GTLN của biểu thức \(Q=x^2+y^2+z^2\)
\(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)
\(\Leftrightarrow8+2\left(xy+yz+zx\right)-4\left(x+y+z\right)-xyz\ge0\)
\(\Leftrightarrow2\left(xy+yz+zx\right)\ge4+xyz\ge4\)
\(\Rightarrow xy+yz+zx\ge2\)
\(\Rightarrow Q=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le9-2.2=5\)
\(Q_{max}=5\) khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và hoán vị
Cho x,y,z là các số thực dương thỏa mãn \(x^4+\left(y^2-1\right)^2+z^4\le3\)
Tìm GTLN của biểu thức \(A=\sqrt{2}y\left(x+z\right)+\frac{1}{x^2+y^2+z^2+1}\)
Theo đề bài ta có:
\(2\left(y^2+1\right)+6\ge\left(x^4+1\right)+\left(y^4+4\right)+\left(z^4+1\right)\ge2x^2+4y^2+2z^2\)
\(\Rightarrow0< x^2+y^2+z^2\le4\)
Đặt: \(t=x^2+y^2+z^2.Đkxđ:0< t\le4\)
Ta có: \(\sqrt{2}\left(x+y\right)y=\sqrt{2x}y+\sqrt{2z}y\le\frac{2x^2+y^2}{2}+\frac{2z^2+y^2}{2}=x^2+y^2+z^2\)
\(P\le x^2+y^2+z^2+\frac{1}{x^2+y^2+z^2+1}=t+\frac{1}{t+1}=f\left(t\right)\)
Xét hàm: \(f\left(t\right)=t+\frac{1}{t+1}\) liên tục trên \(\left(0;4\right)\)
\(f'\left(t\right)=1-\frac{1}{\left(t+1\right)^2}>0\forall t\in\left\{0;4\right\}\)nên:
\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left\{0;4\right\}\)
\(\Rightarrow P\le f\left(t\right)\le f\left(4\right)=\frac{21}{5}\forall t\in\left(0;4\right)\)
\(\Rightarrow P_{Min}=\frac{21}{5}\Leftrightarrow\orbr{\begin{cases}x=z=1\\y=\sqrt{2}\end{cases}}\)
Vậy ....................
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡
có cách nào không dùng hàm k ???
Hmmm h thì mình chưa ra nhưng bạn muốn theo cách gì để mình tìm?
cho \(0\le x,y,z\le3\)
và x+y+z=4
Tính GTLN của biểu thức T=x2+y2+z2
Cho \(0\le x,y,z\le3\) . Tìm GTLN của:
\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{z\left(z-2x\right)+x^2}\)
\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)
\(=\sqrt{x^2-2xy+y^2}+\sqrt{y^2-2yz-z^2}+\sqrt{x^2-2xz+z^2}\)
\(=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=x-y+y-z+z-x\)
\(=0\)
cho \(x,y,z\ge0\) thỏa mãn \(x+y+z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2+y^2+z^2\)
Lời giải:
Tìm min:
Áp dụng BĐT AM-GM:
$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$
Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$
--------------
Tìm max:
$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$
Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$
$\Rightarrow A=36-2(xy+yz+xz)\leq 36$
Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.
\(A=x^2+y^2+z^2\)
x+y+z=3
\(0\le x,y,z\le2\)
GTLN
\(A=x^2+y^2+z^2\le\left(x+y+z\right)^2=9\)
gtln của A = 9
Với \(x=y=z=1\)
easy không ? =)
Có 0 <= x,y,z => xyz >= 0
Có x,y,z <=2 => (2-x)(2-y)(2-z)>=0 => 8 - 4(x+y+z) + 2(xy+yz+zx) -xyz >=0
Từ đó => 8 - 4(a+b+c) +2(ab+bc+ca)>=0
=> 8 - 4(a+b+c) + (a+b+c)^2 >= a^2+b^2+c^2
=> 8 -4.3 +3^2 >=A (vì x+y+z=3)
=> 5>= A
Dấu "=" xảy ra khi x=2,y=1,z=0
Vậy Max A =5 khi x=2,y=1,z=0
Cho các số thức x,y,z thỏa mãn 2(y^2+yz+z^2)+3x^2=36.Tìm GTLN và GTNN của biểu thức A=x+y+z
Cho x , y , z thỏa mãn \(1\le x,y,z\le2\) . Tìm giá trị lớn nhất của biểu thức : \(A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)