Chứng tỏ rằng: 1+2+3+4+...+70000 chia hết cho 100
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
Cho biểu thức M =(1+1/2+1/3+1/4+...+1/100)×2×3×4×5×…×100
Chứng tỏ rằng M chia hết cho 101
Www duoccvvvv làm gì để giảm cân nhanh và an toàn cho người ta có thể học được cách điệu với áo dài đau đớn đau đầu sốt ói mửa và tiêu thụ sản phẩm của mình và người
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
A=1+3+3^2+3^3+...+3^100
Chứng tỏ rằng: A chia hết cho 4
Ta có:
\(A=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{99}+3^{100}\right)\)
\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(\Rightarrow A=\left(1+3+...+3^{99}\right)\left(1+3\right)\)
\(\Rightarrow A=Q.4\)
\(\Rightarrow A⋮4\)
Vậy \(A=1+3+3^2+3^3+...+3^{100}⋮4\) (Đpcm)
\(A=1+3+...+3^{100}\)
A có 101 số hạng do vậy nếu ta ghép 2 số hạng ta được
\(A=1+3\left(1+3\right)+...+3^{99}\left(1+3\right)\)như vậy
Vậy A chia cho 4 luôn dư 1
Kết luận đề Sai
Hỏi : @ hoàng hung quan
Với lời giải này phải chăng mọi số đều chia hết cho 4
@phynit
Bài 1: Cho A=4+41+43+...4100
a) Tính A
b) Chứng tỏ rằng A chia hết cho 5; A chia hết cho 20; A chia hết cho 21
Bài 2: Cho B= 7+72+73+...7400
a) Tính B
b) Chứng tỏ rằng B chia hết cho 8; B chia hết cho 56; B chia hết cho 57
Cho tổng M = 1 + 4 + 4^2 + 4^3+...+4^100 .
Chứng tỏ rằng M ko chia hết cho 5.
Giải :
M = 1 + 4 + 4^2 + 4^3 +...+ 4^100
= 1 + ( 4+4^2) + ( 4^3+4 ^4) +... + ( 4^99+4^100)
= 1+4 . (1+4) + 4^3 . ( 1+4) +...+4^99 . (1+4)
=1+4.5 + 4^3.5+... + 4^99.5
= 1 +5. ( 4 + 4^3+...+4^99)
Vì 5. ( 4+ 4^3 +...+ 4^99) chia hết cho 5.
Mà 1 không chia hết cho 5.
=> M không chia hết cho 5.
Cảm ơn ! Quên chưa cảm ơn trước :>
1)chứng tỏ rằng tích n(n+1)(n+5) là một số chia hết cho 3 với mọi số tự nhiên n
2)Tìm số dư khi chia tổng 2^1+2^2+2^3+2^4+...+2^99+2^100 cho 7
3)Chứng tỏ rằng số có dạng abcabc chia hết cho 7:11:13
a/Chứng tỏ rằng: 2x + 3y chia hết cho 17<=> 9x=5y chia hết cho 17
b/ cho C= 3+3^2 +3^3+3^4+...+3^100. chứng tỏ C chia hết cho 40
c/ tìm các số nguyễn x, y thỏa mãn (x-2)^2.(y-3)=-4
Chứng tỏ rằng : \(3^1+3^2+3^3+3^4+.....+3^{99}+3^{100}⋮4\) chia hết cho 4
đặt A = 3 + 32 + 33 + 34 + ... + 399 + 3100
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
A = 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )
A = 3 . 4 + 33 . 4 + ... + 399 . 4
A = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)4