tìm số tự nhiên a biết a/6 dư 5.Chứng minha^2 /6 dư 1
tìm số tự nhiên a biết a/6 dư 5.Chứng minh a^2 /6 dư 1
Ta có a: 6 dư 5
=> a= 6k+5 với k ϵ N
có: a2 = (6k+5)2 = 36k2+ 60k+25
vì 36k2⋮6 ; 60k⋮6 ; 25 : 6 dư 1
=> a2 chia 6 dư 1
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
1. Cho hai số tự nhiên a và b, biết a chia cho 6 dư 2 và b chia cho 6 dư 3. Chứng minh rằng ab chia hết cho 6
2. Cho a và b là hai số tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3. Chứng minh rằng ab chia cho 5 dư 1
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Tìm số tự nhiên a biết a:2 dư 1,a:6 dư 5,a:7 dư 6, a:8 dư 7?
tìm số a nhỏ nhất biết rằng chia a cho 4 , 5 , 6 số dư lần lượt là 3 , 1 ,1
1) Tìm số tự nhiên M biết khi chia M cho 2,3,4,5,6,10 đều dư 1
2) Tìm số tự nhiên A nhỏ nhất biết A : 2 dư 1 , A : 3 dư 2 , A : 4 dư 3, A :5 dư 4, A : 6 dư 5, A : 10 dư 9
mai kiểm tra rồi, giúp mik nhanh nhanh với nha!!!
bài 1
Tìm 2 số tự nhiên a,b biết a+2b=48 và UWCLN(a,b)+3*BCNN(a,b)=114
bài 2
Tìm 2 số tự nhiên a,b biết ƯCLN(a,b) + BCNN(a,b)=15
bài 3
Một số chia cho 21 dư 2 và chia 12 dư 5 . Hỏi số đó chia cho 84 thì dư bao nhiêu
bài 4
Cho một số tự nhiên a thỏa mãn a chia hết cho 7 và a chia cho 4 hoặc 6 đều dư 1 . tìm a biết a <400
bài 5
Tìm số tự nhiên lớn nhất có 3 chữ số sao cho chia nó cho 2 , cho 3 , cho 4 , cho 5 , cho 6 ta được số dư theo thứ tự là 1 , 2 , 3 , 4 , 5
bài 6
Cho n thuộc N chứng tỏ rằng
a) (2n+1,2n+3)=1
b)(2n+5,3n+7)=1
(nêu rõ cách trình bày hộ mình nhé cảm ơn mọi người nhiều !!!)
Chắc chắn lớp 6 làm đc, chỉ là chưa bít cách làm mà thôi.Hihi
Tìm số tự nhiên a biết a chia cho 6 dư 2,a chia 9 dư 5 và a chia cho 13 dư 9 biết rằng với a là số tự nhiên có 3 chữ số
Có:
+) a chia 6 dư 2 => a - 2 chia hết cho 6 => ( a - 2 + 6 ) chia hết cho 6 => a +4 chia hết cho 6
+) a chia 9 dư 5 => a - 5 chia hết cho 9 => ( a - 5 + 9 ) chia hết cho 9 => a +4 chia hết cho 9
+) a chia 13 dư 9 => a -9 chia hết cho 13 => ( a - 9 + 13 ) chia hết cho 13 => a +4 chia hết cho 13
=> a +4 thuộc BC ( 6; 9 ; 13)
Có:
\(BCNN\left(6;9;13\right)=234\)
=> \(a+4\in\left\{0;234;468;702;936;1170;....\right\}\)mà a là số tự nhiên có 3 chữ số
=> \(a\in\left\{230;464;698;934\right\}\)
BÀI 1: tìm số tự nhiên a nhỏ nhất sao cho a chia cho 3 ,5,6 được số dư lần lượt là 2,3,4
b) tìm số tự nhiên a nhỏ nhất biết a chia cho 3 dư 1 , cho 4 dư 2 , cho 5 dư 3 , cho 6 dư 4 và chia hết cho 13
1. một số tự nhiên biết khi chia cho 4 ; 5 ; 6 đều dư 1 .Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400
2. Một số tự nhiên a khi chia cho 4 thì dư 3 ; chia cho 5 thì dư 4 ; chia cho thì dư 5 . Tìm số tự nhiên a biết rằng 200 nhỏ hơn hoặc bằng a và a nhỏ hơn hoặc bằng 400
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
2. Ta thấy \(a+1\)là BC của (4;5;6) và 201 < a + 1 < 401
=> BCNN (4,5,6) = 60 .
BC (4,5,6) = {0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ....}
=> a + 1 = 240 ; a + 1 = 300 hoặc a + 1 = 360 => a = {239 ; 299 ; 359}
Vậy ....