Tìm x:
\(\frac{1}{2a^2+1}:x=2\)
\(T=\frac{x}{ax-2a^2}-\frac{2}{x^2+\left(1-2a\right)x-2a}\left(1+\frac{x^2+3x}{x+3}\right)\)Tìm x để T=a với a là tham số
phân tích ta được T=\(\frac{1}{a}\)
suy ra với a=1 hoặc a=-1 thi với mọi x thì t=a.
Nếu a<>1 va a<>-1 thì ko có x.
1/ Tìm GTLN : -9a2+a+5
2/ Tìm GTNN : 2a2+2ab+b2+2a+5
3/ Tìm GTNN : \(\frac{2a^2+4a+1}{a^2}\)
4/ Cho x+y=1 ; x,y dương . Tìm GTNN : \(\frac{1}{x^2}\) + \(\frac{1}{y^2}\)
1/ \(-9a^2+a+5=-\left(\left(3a\right)^2+2\cdot a\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}\right)=-\left(3a+\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy GTLN của biểu thức bằng -19/4
Dấu "=" xảy ra \(\Leftrightarrow\left(3a+2\right)^2=0\Leftrightarrow3a+2=0\Leftrightarrow a=-\frac{2}{3}\)
2/ \(2a^2+2ab+b^2+2a+5=a^2+2ab+b^2+a^2+2a+5=\left(a+b\right)^2+\left(a^2+2a+1\right)+4=\left(a+b\right)^2+\left(a+1\right)^2+4=0\ge4\)
Vậy GTNN của biểu thứ bằng 4
Dấu "=" xảy ra \(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2=0\Leftrightarrow a+b+a+1=0\Leftrightarrow2a+b+1=0\Leftrightarrow2a=-1-b\Leftrightarrow a=-\frac{1+b}{2}\)
4/ Ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\) ví x, y dương
\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{\frac{1}{4}}=8\)
Dấu bằng xảy ra khi và chỉ khi: x=y
1.Thực phép tính nhanh
\(\frac{1}{x}\)+\(\frac{1}{x\left(x+1\right)}\)+\(\frac{1}{\left(x+1\right)\left(x+2\right)}\)+....+\(\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
2: cho biểu thức :
A=\(\frac{x^2-2x+1}{x-1}\)+\(\frac{x^2+2x+1}{x+1}\)-3
a)Tìm điều kiện đê giá trị của biểu thức A được xác định
b)Rút gọn biểu thức A
c)Tính giá trị của A khi x =3
d)Tìm x khi A= -2
3)Tính
a)\(\frac{-1}{2-3x}\)+\(\frac{5}{3x-2}\) b)\(\frac{2a-1}{2a+1}\)-\(\frac{2a-3}{2a-1}\)c)\(\frac{2}{x+3}\)+\(\frac{3}{x^2-9}\)d)\(\frac{a^2-2a+1}{a^2-a}\)-\(\frac{2a^3-a^2}{a^4+a^3}\)
e)\(\frac{x^2+2}{x}\)-\(\frac{2x+2}{x}\)f)\(\frac{x+3}{x^2-y^2}\)-\(\frac{3-y}{x^2-y^2}\)g)\(\frac{5x+4}{3x+15}\)+\(\frac{x-2}{x+5}\)h)\(\frac{x+4}{2x+4}\)-\(\frac{x-2}{x^2-4}\)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
\(A=\frac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\right]\)
a) Rút gọn A
b) Tìm A khi \(x=-\frac{1}{2}\)
c) Tìm x để 2A=1
bài 1:Cho M=(1+$\frac{a}{a^{2}+1}$) :($\frac{a}{a^{2}-1}$-$\frac{2a}{a^{3}-a^{2}+a-1}$ )
a)tìm điều kiện xác định
b)rút gọn M
bài 2:cho f(x)=2$x^{2}$+ax+1 và g(x)=x-3
tìm a để f(x):g(x) dư 4
tìm x biết : \(\frac{1}{2a^2+1}:x=2\)
cho A=\(\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\right]\)
a) rút gọn A
b) tìm A khi x = \(-\frac{1}{2}\)
c) tìm x để 2A = 1
Câu 1:
\(A=\frac{x\left(1-x^2\right)}{1+x^2}:\left[\left(\frac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}+x\right)\left(\frac{\left(1+x\right)\left(x^2-x+1\right)}{1+x}+x\right)\right]\)
\(=\frac{x\left(1-x^2\right)}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\frac{x\left(1-x^2\right)}{\left(1+x^2\right)\left(1+x\right)^2\left(x-1\right)^2}=\frac{x}{\left(1+x^2\right)\left(x^2-1\right)}=\frac{x}{x^4-1}\)
Câu 2: thay x vào A có :
\(A=\frac{-\frac{1}{2}}{\frac{1}{4}-1}=\frac{2}{3}\)
Câu c :
2A=1 => \(\frac{x}{x^4-1}=\frac{1}{2}\)ĐK \(\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x^4-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^3-x^2+x-1\right)=0\)
\(\left(x+1\right)\left(x^2+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)loại do điều kiện vậy ko có giá trị nào của x thỏa mãn
Tìm x biết:
\(\frac{1}{2a^2+1}:x=2\)
\(\frac{1}{2a^2+1}:x=2\)
\(\Rightarrow\frac{1}{\left(2a^2+1\right)x}=2\)
\(\Rightarrow\frac{1}{2a^2+1}=2x\)
\(\Rightarrow x=\frac{1}{2\left(2a^2+1\right)}\)
Bài 1.
Cho \(A=\frac{x\left(1-x^2\right)^2}{1+x^2}:[\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)]\)
a. Rút gọn A
b. Tìm A khi \(x=\frac{-1}{2}\)
c. Tìm x để \(2A=1\)
Bạn lên mạng à nha!!!mk lười lắm!!
k mk nha!
thanks!
ahihi!!!