Tìm GTNN của M biết:
M= x^2 + xy + y^2 -3x -3
Ai giúp tui với
Tìm GTNN của biểu thức
A= x2 - xy + y2 - 3x -3y
Giúp tui ikkk mn ơii
Tìm GTNN của biểu thức
A= x2 - xy + y2 - 3x -3y
Giúp tui ikkk
Bác nào giúp em bài toán này với: CHO 2 SỐ DƯƠNG X,Y THỎA XY=3. TÌM GTNN CỦA P=3/X+9/Y-26/(3X+Y)
Tìm GTNN của Q=x^2+xy+y^2-3x-3y+1999
R=2x^2+2xy+y^2-2x+2y+15
Giúp mk với
Lời giải:
$2Q=2x^2+2xy+2y^2-6x-6y+3998$
$=(x^2+2xy+y^2)+x^2+y^2-6x-6y+3998$
$=(x+y)^2-4(x+y)+(x^2-2x)+(y^2-2y)+3998$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+3992$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+3992\geq 3992$
$\Rightarrow Q\geq 1996$
Vậy $Q_{\min}=1996$ khi $x+y-2=x-1=y-1=0\Leftrightarrow x=y=1$
------------------
$R=(x^2+2xy+y^2)+x^2-2x+2y+15$
$=(x+y)^2+2(x+y)+x^2-4x+15$
$=(x+y)^2+2(x+y)+1+(x^2-4x+4)+10$
$=(x+y+1)^2+(x-2)^2+10\geq 10$
Vậy $R_{\min}=10$ khi $x+y+1=x-2=0$
$\Leftrightarrow x=2; y=-3$
Giúp mk vs:
Tìm GTNN,GTLN của M = x^2+xy+y^2/ x^2+y^2
Max:
\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra tại x=y
Tìm GTNN của bt:
M=3x2+y2 với 3x+y=1
N=x2+xy+y2_3x_3y
* \(3x+y=1\Rightarrow y=1-3x\)
\(M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=12\left(x^2-\dfrac{1}{2}x+\dfrac{1}{12}\right)=12\left(x^2-2.x.\dfrac{1}{4}+\dfrac{1}{16}\right)+\dfrac{1}{4}=12\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)\(\Rightarrow Min_M=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{4}\)
\(N=x^2+xy+y^2-3x-3y\)
\(4N=4x^2+4xy+4y^2-12x-12y\)
\(4N=\left(4x^2+4xy+y^2\right)-12x-6y+9+3y^2-6y+3-12\)
\(4N=\left(2x+y\right)^2-2.3\left(2x+y\right)+9+3\left(y-1\right)^2-12\)
\(4N=\left(2x+y-3\right)^2+3\left(y-1\right)^2-10\ge-12\)
\(\Rightarrow N\ge-3\)
\(\Rightarrow Min_N=-3\Leftrightarrow x=y=1\)
Tìm m biết:m+2 = 3x4+5, 1x2y2-y4; -x4-7, 2xy3
tìm gtnn của B = x^2 + y^2 +xy -3x-3y
Tìm đã thức M biết:
M-(2xy-4y^2+3x^2)=5xy+3/2x^2-6y^2=???
MN ơi giúp mik vs
Mik cảm ơn trước😘
\(M=5xy+\dfrac{3}{2}x^2-6y^2+2xy-4y^2+3x^2\)
\(M=\left(5xy+2xy\right)+\left(\dfrac{3}{2}x^2+3x^2\right)+\left(-6y^2-4y^2\right)\)
\(M=7xy+\dfrac{9}{2}y^2-10x^2\)