Tính A, biết: (tính nhanh, ko tính máy tính)
\(A=\frac{1}{2.32}+\frac{1}{3.33}+\frac{1}{4.34}\)
Tính \(\frac{A}{B}\)biết:
\(A=\frac{1}{2.32}+\frac{1}{3.33}+\frac{1}{4.34}+...+\frac{1}{1973.2003}\)
\(B=\frac{1}{2.1074}+\frac{1}{3.1075}+\frac{1}{4.1076}+...+\frac{1}{34.2003}\)
Tính \(\frac{A}{B}\)biết :
\(A=\frac{1}{2.32}+\frac{1}{3.33}+....+\frac{1}{n\left(n+30\right)}+....+\frac{1}{1973.2003}\)
\(B=\frac{1}{2.1974}+\frac{1}{3.1975}+....+\frac{1}{n\left(n+1972\right)}+....+\frac{1}{31.2003}\)
\(A=\frac{1}{2.32}+\frac{1}{3.33}+...+\frac{1}{1973.2003}\)
\(=\frac{1}{30}\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+...+\frac{1}{1973}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1973}-\frac{1}{32}-\frac{1}{33}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}-\frac{1}{1974}-\frac{1}{1975}-...-\frac{1}{2003}\right)\)
\(B=\frac{1}{2.1974}+\frac{1}{3.1975}+...+\frac{1}{31.2003}\)
\(=\frac{1}{1972}\left(\frac{1}{2}-\frac{1}{1974}+\frac{1}{3}-\frac{1}{1975}+...+\frac{1}{31}-\frac{1}{2003}\right)\)
\(=\frac{1}{1972}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}-\frac{1}{1974}-\frac{1}{1975}-...-\frac{1}{2003}\right)\)
Vậy \(\frac{A}{B}=\frac{1972}{30}\)
A= \(\frac{1}{2.32}+\frac{1}{3.33}+...+\frac{1}{\eta.\left(\eta+30\right)}+...+\frac{1}{1973.2003}\)
B= \(\frac{1}{2.1974}+\frac{1}{3.1975}+...+\frac{1}{\eta.\left(\eta+1972\right)}+...+\frac{1}{31.2003}\)
Tính P/Q biết:
P = 1/2.32 + 1/3.33 + ... + 1/n.(n+30) + ... + 1/1973.2003
Q = 1/2.1974 + 1/3.1975 + ... + 1/n.(n+1972) + ... + 1/31.2003
\(P=...\)
\(=\frac{1}{30}\left(\frac{30}{2.32}+\frac{30}{3.33}+...+\frac{30}{1973.2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+...+\frac{1}{1973}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1973}\right)-\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{2003}\right)\right]\)
\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)
\(Q=...\)
\(=\frac{1}{1972}\left(\frac{1972}{2.1974}+\frac{1972}{3.1975}+...+\frac{1}{31.2003}\right)\)
\(=\frac{1}{1972}\left(\frac{1}{2}-\frac{1}{1974}+\frac{1}{3}-\frac{1}{1975}+...+\frac{1}{31}-\frac{1}{2003}\right)\)
\(=\frac{1}{1972}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)
Gọi \(\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]=A\)
Ta có:\(\frac{P}{Q}=\left(\frac{1}{30}.A\right):\left(\frac{1}{1972}.A\right)=\frac{A}{30}\cdot\frac{1972}{A}=\frac{1972}{30}=\frac{986}{15}\)
a.không tính hãy chứng minh rằng 2 số A=2007^2+2^2007 va B= 2007 là 2 số nguyên tố cùng nhau
b.không tính máy tính ,hãy tính
A=\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}\)+......+\(\frac{1}{1+2+3+...+20}\)
jup mình nha mình đang vội
ai nhanh mình tick cho
Tính nhanh:
\(\frac{33.44^2+55^3.33}{45.33^2-99.33^4}\)
\(\frac{33.44^2+55^3.33}{45.33^2-99.33^4}\)
\(=\frac{33.121.16+121.25.33}{5.9.33^2-11.9.33^2.33^2}\)
\(=\frac{33.121\left(16+25\right)}{1089.9.\left(5-11.1089\right)}\)
\(=\frac{3993.41}{9801.\left(-11974\right)}\)
\(=-\frac{163713}{117357174}\).
\(\frac{33.44^2+55^3.33}{45.33^2-99.33^4}\)
=\(\frac{33.\left(4.11\right)^2+\left(5.11\right)^3.33}{9.5.33^2-9.11.33^4}\)
=\(\frac{33.16.11^2+125.11^3.33}{33^2.9.\left(5-11.33^2\right)}\)
= \(\frac{33.11^2.\left(16+125.11\right)}{33^2.9.\left(-11974\right)}\)
= \(\frac{132.1391}{33.9.\left(-107766\right)}\)
= \(\frac{183612}{-32006502}\)
mik ko chắc chắn lắm
Cảm ơn 2 bạn nha
Mình sẽ nghiên cứu bài này
Cảm ơn nhiều
tính \(A=-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{52}-\frac{1}{72}-\frac{1}{90}-\frac{1}{110}\)(tính nhanh)
bn ơi sai đề r bn ơi cái 1/52 phải là 1/56 chứ
A= đã cho.
=>-A=1/20+1/30+1/42+1/56+1/72+1/90+1/110.
=>-A=1/4*5+1/5*6+1/6*7+1/7*8+1/8*9+1/9*10+1/10*11.
=>-A=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11.
=>-A=1/4-1/11=7/44.
=>A=-7/44.
thay số 1/52 là 1/56 mới đúng,mk làm rồi.
tk mk nha các bn.
-chúc ai tk mk học giỏi-
NHANH + ĐÚNG = TICK (đang cần gắp mấy bạn giải nhanh hộ )
Tính nhanh tổng sau : \(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
Tính nhanh : \(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
Tính nhanh tổng sau : \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{21}\)
\(A=1-\frac{1}{51}\)
\(A=\frac{51}{51}-\frac{1}{51}\)
\(A=\frac{50}{51}\)
\(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(A=\frac{21}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{30.101}+\frac{33.101}{42.101}\right)\)
\(A=\frac{21}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{21}{4}.33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(A=\frac{21}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(A=\frac{21}{4}.33.\frac{4}{21}\)
\(A=33\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\frac{98}{99}\)
\(A=\frac{49}{99}\)
1) a/ Tính:
\(1-\frac{1}{2};\frac{1}{2}-\frac{1}{3};\frac{1}{3}-\frac{1}{4};\frac{1}{4}-\frac{1}{5};\frac{1}{5}-\frac{1}{6}\)
Sử dụng kết quả của câu a/ để tính nhanh tổng sau :
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
2)a/Tính nhanh:
B= \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
b/ Tính nhanh:
C= \(\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)