M=2n+1/n+5 (n thuộc z) tìmgias trị của n đê biểu thức M có giá trị nguyên
cho biểu thức P=2n+1/n+5 (N thuộc Z). Tìm n để P có giá trị là một số nguyên
a) tìm x nguyên để giá trị của biểu thức 2x2+x-7 chia hết cho giá trị của biểu thức x-2
b) tìm n thuộc Z để giá trị của biểu thức 2n2-n+2 chia hết cho giá trị của biểu thức 2n+1
Giúp mình
cho phân số M=3n+7/n+2(n thuộc Z)
a,Tìm n để phân số n xác định
b,Tinh giá trị của M biết n+1 là ước tự nhiên của 2n+5
c,Với giá trị nào của n thì phân số M có giá trị nguyên?
Tìm số tự nhiên n để biểu thức C=2n+2/n+2 + 5n+17/n+2 - 3n/n+2 là số tự nhiên
Cho phân số P=n+4/2n-1 với n thuộc Z. tìm số nguyên n để giá trị của P là số nguyên tố
Cho phân số M=n+1/n-1.Với giá trị nào của n thì M là một số chẵn?Một số nguyên âm?
Tìm N thuộc z sao cho biểu thức n+3/2n+9 có giá trị là một số nguyên
Lời giải:
Với số nguyên $n$, để $\frac{n+3}{2n+9}$ là số nguyên thì $n+3\vdots 2n+9$
$\Rightarrow 2(n+3)\vdots 2n+9$
$\Rightarrow (2n+9)-3\vdots 2n+9$
$\Rightarrow 3\vdots 2n+9$
$\Rightarrow 2n+9\in\left\{\pm 1;\pm 3\right\}$
$\Rightarrow n\in\left\{-5;-4;-3; -6\right\}$
Tìm n thuộc Z để biểu thức sau có giá trị nguyên
A= \(\frac{2n+8}{5}+\frac{-n-7}{5}\)
\(A=\frac{2n+8}{5}+\frac{-n-7}{5}\)
\(\Leftrightarrow A=\frac{2n+8-n-7}{5}\)
\(\Leftrightarrow A=\frac{n+1}{5}\)
Để A nguyên thì \(\frac{n+1}{5}\)nguyên
\(\Rightarrow\left(n+1\right)⋮5\)
\(\Leftrightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
\(n+1\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(m\) | \(-6\) | \(-2\) | \(0\) | \(4\) |
Cho biểu thức A = (2n + 2)/(2n - 4) ( n thuộc Z)
a, Với giá trị nào của n thì A là phân số
b,Với giá trị nào của n thì A là số nguyên
Tìm n thuộc Z để các biểu thức sau có giá trị nguyên:
B=9n+a/3n-2 ; C=2n+1/4n+6 ; D= 2n+1/n-3.
a, bạn sửa lại đề nhé
b, \(C=\frac{2n+1}{4n+6}=\frac{4n+4}{4n+6}=\frac{4n+6-2}{4n+6}=1-\frac{2}{4n+6}=1-\frac{1}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n + 3 | 1 | -1 |
2n | -2 | -4 |
n | -1 | -2 |
\(D=\frac{2n+1}{n-3}=\frac{2\left(n+\frac{1}{2}\right)}{n-3}=\frac{2\left(n-3+\frac{7}{2}\right)}{n-3}\)
\(=\frac{2\left(n-3\right)+7}{n-3}=2+\frac{7}{n-3}\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n - 3 | 1 | -1 | 7 | -7 |
n | 4 | 2 | 10 | -4 |
Cho biểu thức A=2n+2/2n-4 với n thuộc Z.
a) với giá trị nào của n thì A là phân số
b) với giá trị nào của n thì A là số nguyên
\(a)\) Để \(A\) là phân số thì \(2n-4\ne0\)
\(\Leftrightarrow\)\(n\ne2\)
Vậy với \(n\ne2\) thì biểu thức A là phân số .
\(b)\) Ta có : \(\left(2n+2\right)⋮\left(2n-4\right)\) thì A là số nguyên :
\(\Leftrightarrow\)\(2n+2=2n-4+6\) chia hết cho \(2n-4\)\(\Rightarrow\)\(6⋮\left(2n-4\right)\)\(\Rightarrow\)\(\left(2n-4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n-4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(2,5\) | \(1,5\) | \(3\) | \(1\) | \(3,5\) | \(0,5\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{3;1;5;-1\right\}\)