Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Thái
Xem chi tiết
Hoàng Lê Bảo Ngọc
27 tháng 9 2016 lúc 18:27

Đặt \(A=\frac{x^2-2x+2007}{2007x^2}=\frac{1}{x^2}-\frac{2}{2007x}+\frac{1}{2007}\)

Lại đặt \(t=x^2,t\ge0\)

Suy ra \(A=t^2-\frac{2}{2007}t+\frac{1}{2007}\)

Tới đây bài toán đưa về tìm giá trị nhỏ nhất của đa thức bậc 2

Hoàng Lê Bảo Ngọc
27 tháng 9 2016 lúc 18:27

Đặt t = 1/x nhé

Nguyễn Hoàng Thái
27 tháng 9 2016 lúc 19:29

sao kết quả ra xấu quá z bạn, không ra gì hết

Trần Thùy
Xem chi tiết
Phương Trình Hai Ẩn
10 tháng 6 2017 lúc 19:49

điều kiện là j bạn :)

zZz Phan Cả Phát zZz
10 tháng 6 2017 lúc 20:11

Chắc là tự tìm đk đó Nguyễn Ngọc Sáng 

Phạm Thị Quỳnh Anh
Xem chi tiết

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Leftrightarrow x=2007\)

Đ𝒂𝒏 𝑫𝒊ệ𝒑
17 tháng 3 2020 lúc 16:45

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Rightarrow x=2007\)

Khách vãng lai đã xóa
Lê Thị Vân Anh
Xem chi tiết
Mika Chan
7 tháng 10 2017 lúc 21:34

A=x22x+20072007x2A=x2−2x+20072007x2
<=> (2007A1)x2+2x2007=0(2007A−1)x2+2x−2007=0
Delta' =1+2007(2007A1)0=1+2007(2007A−1)≥0
<=> A200620072

Unruly Kid
8 tháng 10 2017 lúc 6:52

Bài này đặt hàm số hoặc nhân cả tử và mẫu cho 2007, biến đổi ra min

V
Xem chi tiết
Nope...
16 tháng 8 2019 lúc 15:15

\(A=\frac{x^2-2x+2007}{2007x^2}=\frac{2006}{2007^2}+\frac{x^2-4014x+2007^2}{2007^2x^2}=\frac{2006}{2007^2}+\frac{\left(x-2007\right)^2}{2007^2x^2}\ge\frac{2006}{2007^2}\)

Dấu ''='' xảy ra \(\Leftrightarrow\) x = 2007

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\) hay \(x=2007\)

V
16 tháng 8 2019 lúc 15:17

Cảm ơn 2 e thân iu 

Mai Diễm My
Xem chi tiết
Hồng Quang
8 tháng 4 2018 lúc 21:20

ĐKXĐ: \(x\ne0\)

\(\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2007x^2-2.2007x+2007^2}{2007^2.x^2}\)\(\Rightarrow\dfrac{\left(x-2007\right)^2}{2007^2.x^2}+\dfrac{2006}{2007^2}\ge\dfrac{2006}{2007^2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=2007\)

Vậy min = \(\dfrac{2006}{2007^2}\)

NGUYEN THI DIEP
Xem chi tiết
Nguyen THi HUong Giang
28 tháng 2 2017 lúc 17:02

\(A=\frac{x^2-2x+2007}{2007x^2}\left(x\ne0\right)\\A=\frac{x^2}{2007x^2}-\frac{2x}{2007x^2}-\frac{2007}{2007x^2}\\ A=\frac{1}{2007}-\frac{2}{2007}-\frac{1}{x^2}\\ A=\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{2007}+\left(\frac{1}{2007}\right)^2+\frac{1}{2007}-\left(\frac{1}{2007}\right)^2\\ A=\left(\frac{1}{x}-\frac{1}{2007}\right)^2+\frac{2006}{2007^2}\)

Để \(\frac{x^2-2x+2007}{2007x^2}\)nhỏ nhất thì \(\frac{1}{x}-\frac{1}{2007}=0\\ \Rightarrow\frac{1}{x}-\frac{1}{2007}=0\\ \Rightarrow x=2017\)

Vậy x=2017

Nguyễn Anh Thư
Xem chi tiết
Xyz OLM
24 tháng 4 2021 lúc 6:22

x = 2006 => x + 1 = 2007

Khi đó N = x6 - 2007x5 + 2007x4 - 2007x3 + 2007x2 - 2007x + 2007

= x6 - (x + 1)x5 + (x + 1)x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + x + 1

= x6 - x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1

= 1 

Khách vãng lai đã xóa
My Nguyễn
Xem chi tiết
alibaba nguyễn
29 tháng 9 2016 lúc 22:46

Không tìm được đâu. Nếu x âm và càng bé hoặc x dương và càng lớn thì cái đó càng gần bằng 0

Hoàng Lê Bảo Ngọc
29 tháng 9 2016 lúc 22:53

Như thế này cho dễ nhé :)

\(\frac{x^2-2x+2007}{2007x^2}=\frac{1}{x^2}-\frac{2}{2007x}+\frac{1}{2007}\)

Đặt \(t=\frac{1}{x},a=\frac{1}{2007}\)

Khi đó bt trở thành \(t^2-2at+a=\left(t^2-2at+a^2\right)+a-a^2=\left(t-a\right)^2+a-a^2\ge a-a^2\)

Vậy BT đạt giá trị nhỏ nhất bằng \(\frac{1}{2007}-\frac{1}{2007^2}\) khi \(\frac{1}{x}=\frac{1}{2007}\Rightarrow x=2007\)

bui thi thanh giang
16 tháng 4 2017 lúc 20:41

chac ko lam đuoc đâu