Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chi Khánh
Xem chi tiết
Đoàn Đức Hà
24 tháng 8 2021 lúc 16:33

Bài 4. 

\(\left|x-1\right|+\left|y-2\right|+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}\)

Bài 3. 

\(\left|x-1\right|+\left|2x-2\right|+\left|4x-4\right|+\left|5x-5\right|=36\)

\(\Leftrightarrow\left|x-1\right|+2\left|x-1\right|+4\left|x-1\right|+5\left|x-1\right|=36\)

\(\Leftrightarrow12\left|x-1\right|=36\)

\(\Leftrightarrow\left|x-1\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)

Khách vãng lai đã xóa
dekhisuki
Xem chi tiết
Phùng Minh Quân
30 tháng 5 2020 lúc 15:50

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Chi Khánh
Xem chi tiết
Phạm Tường Lan Vy
Xem chi tiết
Chi Khánh
Xem chi tiết
Trần Đức Long
Xem chi tiết
Hoàng Phúc
9 tháng 4 2017 lúc 10:37

Đặt A=x^4+y^4+z^4 ,P=x^2+y^2+z^2

Ta có A=(x^2)^2+(y^2)^2+(z^2)^2

Áp dụng bđt Cauchy-Schwarz ta có

3A=[(x^2)^2+(y^2)^2+(z^2)^2](1^2+1^2+1^2) >/ (x^2+y^2+z^2)^2=> A >/ (x^2+y^2+z^2)^2/3

Áp dụng bđt Cauchy-Schwarz lần 2 

3P=(x^2+y^2+z^2)(1^2+1^2+1^2) >/ (x+y+z)^2=> P >/  (x+y+z)^2/3 >/ 2^2/3 >/ 4/3 

=> A >/ (4/3)^2/3=16/27

Đẳng thức xảy ra <=> x=y=z=2/3