Cho x,y,z >=0 và x+y+z=3 Tìm GTNN của A=\(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+z^2}\)
Cho x, y, z > 0 thỏa x + y + z = 1. Tìm GTNN của biểu thức
M = \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\)
\(x^2+xy+y^2=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{\left(x+y\right)^2}{4}=\frac{3}{4}\left(x+y\right)^2\)
(Áp dụng bất đẳng thức \(\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)
Tương tự: \(\sqrt{y^2+yz+z^2}\ge\frac{\sqrt{3}}{2}\left(y+z\right);\sqrt{z^2+zx+x^2}\ge\frac{\sqrt{3}}{2}\left(z+x\right)\)
Suy ra \(M\ge\sqrt{3}\left(x+y+z\right)=\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
cho 3 số x,y,z dương thoả mãn
x+y+z=1
tìm gtnn của bt
\(A=\sqrt{x^2-xy+y^2}+\sqrt{y^2-yz+z^2}+\sqrt{z^2-xz+x^2}\)
áp dụng bđt cô si ta có:
\(xy\le\frac{x^2+y^2}{2};yz\le\frac{y^2+z^2}{2};zx\le\frac{z^2+x^2}{2}\)
\(\Rightarrow A\ge\sqrt{\frac{x^2+y^2}{2}}+\sqrt{\frac{y^2+z^2}{2}}+\sqrt{\frac{z^2+x^2}{2}}\)
theo bunhia thì \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2;2\left(y^2+z^2\right)\ge\left(y+z\right)^2;2\left(z^2+x^2\right)\ge\left(z+x\right)^2\)
\(\Rightarrow A\ge\sqrt{\frac{\left(x+y\right)^2}{4}}+\sqrt{\frac{\left(y+z\right)^2}{4}}+\sqrt{\frac{\left(z+x\right)^2}{4}}=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)
Vậy \(Min_A=1\Leftrightarrow x=y=z=\frac{1}{3}\)
Tìm GTNN của \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\) biết x , y , z > 0 và
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)
Cộng theo từng vế
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)
\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)
\(\Rightarrow1\le x+y+z\)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)
Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Áp dụng bất đẳng thức cộng mẫu số :
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Vậy GTNN của \(A=\frac{1}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Chúc bạn học tốt !!!
Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)
=> \(x+y+z\ge1\)
Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = y = z =1/3
Vậy min A = 1/2 <=> x = y = z = 1/3
Tìm GTNN của A=\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}biếtx,y,z>0,\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
Ta có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\) (luôn đúng)
Vậy \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
Theo BĐT Cauchy-Schwarz dạng Engel
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{1}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+y}=\dfrac{y}{y+z}=\dfrac{z}{z+x}\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Cho x,y,z > 0. Tìm GTLN của: \(A=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Cho x,y,z >0 . Tìm giá trị lớn nhất của \(A=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Tìm GTNN của \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\) biết x , y , z > 0 và \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
Áp dụng BĐT Cauchy cho 2 bộ số thực không âm:
\(\Rightarrow\left\{\begin{matrix}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{matrix}\right.\)
Cộng theo từng vế:
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)
\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)
\(\Rightarrow1\le x+y+z\)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\) ( 1 )
Ta có: \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Áp dụng bất đẳng thức cộng mẫu số:
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\) ( 2 )
Từ điều ( 1 ) và ( 2 )
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Vậy GTNN của \(A=\frac{1}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
x,y,z, dương tm:x+y+z>=3. Tìm GTNN của P= \(\frac{x^2}{yz+\sqrt{8+x^3}}+\frac{y^2}{xz+\sqrt{8+y^3}}+\frac{z^2}{xy+\sqrt{8+z^3}}\)
1) Chứng minh : \(x^2+y^2\)≥\(2x\sqrt{yz}\) Với mọi x,y,z >0
2) Cho x+y+z = 2019 ;x,y,z >0
Tìm GTNN của P = \(\frac{x}{x+\sqrt{2019x+yz}}+\frac{y}{y+\sqrt{2019y+xz}}+\frac{z}{z+\sqrt{2019z+xy}}\)