Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 6 2019 lúc 2:02

Vì x, y, z tỉ lệ với các số a, b, c nên  suy ra x = ka, y = kb, z = kc

Thay x = ka, y = kb, z = kc vào ( x 2   +   2 y 2   +   3 z 2 ) ( a 2   +   2 b 2   +   3 c 2 ) ta được

[ ( k a ) 2   +   2 ( k b ) 2   +   3 ( k c ) 2 ] ( a 2   +   2 b 2   +   3 c 2 )     =   ( k 2 a 2   +   2 k 2 b 2   +   3 k 2 c 2 ) ( a 2   +   2 b 2   +   3 c 2 )     =   k 2 ( a 2   +   2 b 2   +   3 c 2 ) ( a 2   +   2 b 2   +   3 c 2 )     =   k 2 ( a 2   +   2 b 2   +   3 c 2 ) 2     =   [ k ( a 2   +   2 b 2   +   3 c 2 ) ] 2       =   ( k a 2   +   2 k b 2   +   3 k c 2 ) 2       =   ( k a . a   +   2 k b . b   +   3 k c . c ) 2 =   ( x a   +   2 y b   +   3 z c ) 2  

do x = ka,y = kb, z = kc

Vậy

( x 2   +   2 y 2   +   3 z 2 ) ( a 2   +   2 b 2   +   3 c 2 )   =   ( a x   +   2 b y   +   3 c z ) 2

Đáp án cần chọn là: D

Phạm Bảo Châu (team ASL)
Xem chi tiết
KCLH Kedokatoji
6 tháng 9 2020 lúc 21:46

Cần cm: \(\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)=\left(ax+2by+3cz\right)^2\)

Theo bđt Cauchy-Schwarz:

\(VT=\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)\ge\left(ax+\sqrt{2}y.\sqrt{2}b+\sqrt{3}z.\sqrt{3}c\right)^2\)

\(\Rightarrow VT\ge\left(ax+2by+3cz\right)^2\)\(=VP\)

Dấu "=" khi \(\frac{x}{a}=\frac{\sqrt{2}y}{\sqrt{2}b}=\frac{\sqrt{3}z}{\sqrt{3}c}\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Ta thấy dấu "=" ở đây xảy ra vì từ gt \(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

\(\Rightarrowđpcm\)

Khách vãng lai đã xóa
FL.Han_
6 tháng 9 2020 lúc 21:56

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Rightarrow x=ak;y=bk;z=ck\)

\(\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)\)

\(=\left[\left(ak\right)^2+2\left(bk\right)^2+3\left(ck\right)^2\right]\left(a^2+2b^2+3c^2\right)\)

\(=k^2\left(a^2+2b^2+3c^2\right)\left(a^2+2b^2+3c^2\right)\)

\(=k^2\left(a^2+2b^2+3c^2\right)^2\left(1\right)\)

\(\left(ax+2by+3cz\right)^2\)

\(=\left(a.ak+2b.bk+3c.ck\right)^2\)

\(=\left[k\left(a^2+2b^2+3c^2\right)\right]^2\)

\(=k^2\left(a^2+2b^2+3c^2\right)^2\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow dpcm\)

         

                 

Khách vãng lai đã xóa
hageshi haru
Xem chi tiết
Lê Tuấn Nguyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2018 lúc 10:01

nguyen ngoc linh
Xem chi tiết
Phạm Vân Anh
Xem chi tiết
Phương Trình Hai Ẩn
26 tháng 8 2019 lúc 23:36

lên gg sợt cách chứng minh bất đẳng thức buniakovsky nhé 

Phạm Vân Anh
8 tháng 9 2019 lúc 17:33

Phương Trình Hai Ẩn, bạn ơi nếu thế mk hỏi trên đấy r, chứ k mất thời gian hỏi ở đây đâu bạn

Tran Le Khanh Linh
7 tháng 4 2020 lúc 14:06

Phạm Vân Anh  à, Phương Trình Hai Ẩn  chỉ nói lên Google search BĐT Bunhiacopxki thôi. Không nói lên google search bài giải. 

Hơn nữa đề có 1 chút sai sót sửa lại cho đúng (x2+2y2+3z2)(a2+2b2+3c2)=(ax+2by+3cz)2

Khách vãng lai đã xóa
Online Math
Xem chi tiết
Akai Haruma
26 tháng 8 2019 lúc 23:30

Lời giải:

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=m\Rightarrow x=am; y=bm; z=cm\)

Khi đó:

\((x^2+2y^2+3z^2)(a^2+2b^2+3c^2)=[(am)^2+2(bm)^2+3(cm)^2](a^2+2b^2+3c^2)\)

\(=m^2(a^2+2b^2+3c^2)^2(1)\)

Và:

\((ax+2by+3cz)^2=(a.am+2b.bm+3c.cm)^2=[m(a^2+2b^2+3c^2)]^2\)

\(=m^2(a^2+2b^2+3c^2)^2(2)\)

Từ (1) và (2) ta có đpcm.

Lê Tuấn Nguyên
Xem chi tiết
T.Ps
8 tháng 9 2019 lúc 20:46

#)Giải :

Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\Rightarrow\hept{\begin{cases}a=kx\\b=ky\\c=kz\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(a^2+2b^2+3c^2\right)\left(x^2+2y^2+3z^2\right)=\left[\left(kx\right)^2+2\left(ky\right)^2+3\left(kz\right)^2\right]\left(x^2+2y^2+3z^2\right)=k^2\left(a^2+2b^2+3c^2\right)^2\left(1\right)\\\left(ax+2by+3cz\right)^2=\left(kx.x+2ky.y+3kz.z\right)^2=\left[k\left(a^2+2b^2+3c^2\right)\right]^2=k^2\left(a^2+2b^2+3c^2\right)^2\left(2\right)\end{cases}}\)

Từ (1) và (2) => đpcm