Cho các số x,y,z tỉ lệ với các số a,b,c.
CMR:(x2+ 2y2 + 3z2)(a2 +2b2 +3c2)=(ax +2by +3cz)2
Cho các số x, y, z tỉ lệ với các số a, b, c. Khi đó ( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) bằng
A. ax + 2by + 3cz
B. 2 a x + b y + 3 c z 2
C. 2 a x + 3 b y + c z 2
D. a x + 2 b y + 3 c z 2
Vì x, y, z tỉ lệ với các số a, b, c nên suy ra x = ka, y = kb, z = kc
Thay x = ka, y = kb, z = kc vào ( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) ta được
[ ( k a ) 2 + 2 ( k b ) 2 + 3 ( k c ) 2 ] ( a 2 + 2 b 2 + 3 c 2 ) = ( k 2 a 2 + 2 k 2 b 2 + 3 k 2 c 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = k 2 ( a 2 + 2 b 2 + 3 c 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = k 2 ( a 2 + 2 b 2 + 3 c 2 ) 2 = [ k ( a 2 + 2 b 2 + 3 c 2 ) ] 2 = ( k a 2 + 2 k b 2 + 3 k c 2 ) 2 = ( k a . a + 2 k b . b + 3 k c . c ) 2 = ( x a + 2 y b + 3 z c ) 2
do x = ka,y = kb, z = kc
Vậy
( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = ( a x + 2 b y + 3 c z ) 2
Đáp án cần chọn là: D
b1. Cho x,y,z tỉ lệ với các số a,b,c. CMR: (x^2 + 2y^2 + 3z^2)(a^2 + 2b^2 + 3c^2) = (ax + 2by + 3cz)^2
cần gấp ạ!
Cần cm: \(\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)=\left(ax+2by+3cz\right)^2\)
Theo bđt Cauchy-Schwarz:
\(VT=\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)\ge\left(ax+\sqrt{2}y.\sqrt{2}b+\sqrt{3}z.\sqrt{3}c\right)^2\)
\(\Rightarrow VT\ge\left(ax+2by+3cz\right)^2\)\(=VP\)
Dấu "=" khi \(\frac{x}{a}=\frac{\sqrt{2}y}{\sqrt{2}b}=\frac{\sqrt{3}z}{\sqrt{3}c}\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta thấy dấu "=" ở đây xảy ra vì từ gt \(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrowđpcm\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak;y=bk;z=ck\)
\(\left(x^2+2y^2+3z^2\right)\left(a^2+2b^2+3c^2\right)\)
\(=\left[\left(ak\right)^2+2\left(bk\right)^2+3\left(ck\right)^2\right]\left(a^2+2b^2+3c^2\right)\)
\(=k^2\left(a^2+2b^2+3c^2\right)\left(a^2+2b^2+3c^2\right)\)
\(=k^2\left(a^2+2b^2+3c^2\right)^2\left(1\right)\)
\(\left(ax+2by+3cz\right)^2\)
\(=\left(a.ak+2b.bk+3c.ck\right)^2\)
\(=\left[k\left(a^2+2b^2+3c^2\right)\right]^2\)
\(=k^2\left(a^2+2b^2+3c^2\right)^2\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\Rightarrow dpcm\)
Cho các số x,y,z tỉ lệ với các số a,b,c. CMR:
(x2+2y2+3z2)(a2+2b2+3c2)=(ax+2by+3cz)2
Cho các số x,y,z tỷ lệ với a,b,c
CMR: (x^2+2y^2+3z^2)(a^2+2b^2+3c^2)=(ax+2by+3cz)^2
Tìm các số x; y; z biết:
a) x, y, z tỉ lệ với các số 4; 7; 3 và x + y + z = - 42
b) x, y, z tỉ lệ với các số 5; - 3; 8 và 3x -5y -2z = 42
c) x : y : z = 3 : 4 : 5 ; 2 x 2 + 2 y 2 − 3 z 2 = − 100
Cho ba số x,y,z tỉ lệ với các số a,b,c. CMR (x2+2y2+3z2)(a2+2b2+3c2)=(ax+2by+3cz)2
CHo x,y,z tỉ lệ với a,b,c
Chứng minh (x2+2y2+3x2)(a2+2b2+3c2)=(ax+2by+3cz)2
lên gg sợt cách chứng minh bất đẳng thức buniakovsky nhé
Phương Trình Hai Ẩn, bạn ơi nếu thế mk hỏi trên đấy r, chứ k mất thời gian hỏi ở đây đâu bạn
Phạm Vân Anh à, Phương Trình Hai Ẩn chỉ nói lên Google search BĐT Bunhiacopxki thôi. Không nói lên google search bài giải.
Hơn nữa đề có 1 chút sai sót sửa lại cho đúng (x2+2y2+3z2)(a2+2b2+3c2)=(ax+2by+3cz)2
Cho x,y,z tỉ lệ với a,b,c
Chứng minh (x2+2y2+3z2)(a2+2b2+3c2)=(ax+2by+3cz)2
Lời giải:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=m\Rightarrow x=am; y=bm; z=cm\)
Khi đó:
\((x^2+2y^2+3z^2)(a^2+2b^2+3c^2)=[(am)^2+2(bm)^2+3(cm)^2](a^2+2b^2+3c^2)\)
\(=m^2(a^2+2b^2+3c^2)^2(1)\)
Và:
\((ax+2by+3cz)^2=(a.am+2b.bm+3c.cm)^2=[m(a^2+2b^2+3c^2)]^2\)
\(=m^2(a^2+2b^2+3c^2)^2(2)\)
Từ (1) và (2) ta có đpcm.
Cho a,b,c tỉ lệ với x,y,z
(a^2+2b^2+3c^2)(x^2+2y^2+3z^2)=(ã+2by+3cz)^2
#)Giải :
Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\Rightarrow\hept{\begin{cases}a=kx\\b=ky\\c=kz\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(a^2+2b^2+3c^2\right)\left(x^2+2y^2+3z^2\right)=\left[\left(kx\right)^2+2\left(ky\right)^2+3\left(kz\right)^2\right]\left(x^2+2y^2+3z^2\right)=k^2\left(a^2+2b^2+3c^2\right)^2\left(1\right)\\\left(ax+2by+3cz\right)^2=\left(kx.x+2ky.y+3kz.z\right)^2=\left[k\left(a^2+2b^2+3c^2\right)\right]^2=k^2\left(a^2+2b^2+3c^2\right)^2\left(2\right)\end{cases}}\)
Từ (1) và (2) => đpcm