cho a,b,c là độ dài của tam giác ABC. Chứng minh : a^2-b^2-c^2+2bc>0
Cho a,b,c là các độ dài thỏa mãn điều kiện:
\(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}>1\)
Chứng minh rằng:a,b,c là các cạnh của một tam giác
Chứng minh rằng: nếu các cạnh của tam giác được liên hệ với nhau bở bất đẳng thức a^2+b^2>5c^2
thì c là độ dài cạnh nhỏ nhất của tam giác
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) Tam giác ABH đồng dạng với tam giác CAH.
b) AB.AH = AC.BH
c) Gọi D là hình chiếu của điểm H trên AB, biết AH = 5cm và tam giác HBA đồng dạng với tam giác ABC theo tỉ số là 2/5. Tính độ dài đoạn thẳng HD.
cho biểu thức \(A=(b^2+c^2-a^2)^2-4b^2c^2\)
Phân tích đa thức A thành nhân tử
Chứng minh nếu a,b,c là độ dài các cạnh của 1 tam giác thì A<0
TL:
\(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)
\(=\left(b^2+c^2-a^2+2bc\right)\left(b^2+c^2-a^2-2bc\right)\)
Đáp án:
Giải thích các bước giải:
a, phân tích thành nhân tử
M = (a^2 + b^2 - c^2)^2 - 4a^2b^2
= (a^2 + b^2 - c^2 - 2ab)(a^2 + b^2 - c^2 + 2ab)
= [(a-b)^2 - c^2][(a+b)^2 - c^2]
= (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b. Nếu a,b,c là số đo độ dài 3 cạnh của tam giác thì ta có:
a-b < c => a-b-c < 0
a+c > b => a+b-b > 0
a+b > c => a+b-c > 0
a+b+c > 0
Vì tích của 1 số âm với 3 số dương luôn nhận được kết quả là số âm
=> (a-b-c)(a-b+c)(a+b-c)(a+b+c) < 0
Vậy chứng tỏ a,b,c là số đo độ dài của tam giác thì M < 0
Bài 1: a) Chứng minh rằng độ dài một cạnh của tứ giác nhỏ hơn tổng độ dài 3 cạnh còn lại của tứ giác
b) Chứng minh rằng tổng độ dài hai đường chéo của tứ giác:
A) Lớn hơn tổng độ dài 2 cạnh đối
B) Lớn hơn nửa chu vi tứ giác
C) Nhỏ hơn chu vi tứ giác
Bài 2: Cho tứ giác ABCD có AB = BC , góc A + góc C = 180 độ. Chứng minh DB là phân giác của góc ADC
Chứng minh rằng a, b, c và a' ,b' ,c' là độ dài 3 cạnh của 2 tam giác đồng dạng và các độ dài trêng đã tương ứng thì \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{(a+b+c)(a'+b'+c')}\) .
Ta có \(a,b,c\)và \(a',b',c'\)là độ dài các cạnh tương ứng của 2 tam giác đồng dạng
Đương nhiên \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\left(k>0\right)\). Khi đó:
\(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{k}\left(a'+b'+c'\right)\)(1)
\(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k\left(a'+b'+c'\right)^2}=\sqrt{k}\left(a'+b'+c'\right)\)(2)
Từ (1) và (2) suy ra ĐPCM.
Cho a;b;c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng:
a) ab+ac+bc ≤ a^2+b^2+c^2 < 2(ab+ac+bc)
b) ab+ac+bc > (a^2+b^2+c^2)/2
Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca
a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²
Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn
o0o Nguyễn Việt Hiếu o0o =)) người ta đã ko bt , m ko chỉ còn câu câu trả lời ...... cạn lời
cho tam giác ABC có độ dài các đường cao là số nguyên và bán kính của đường tròn nội tiếp tam giác bằng 1 ( đơn vị độ dài). chứng minh rằng ABC là tam giác đều
Gọi độ dài 3 cạnh DABC lần lượt là a,b,c. Đường cao hạ từ các đỉnh A,B,C là x,y,z. Bán kính đường tròn nội tiếp tam giác ABC = 1. Khi đó ta có
SABC=1/2ax=1/2by=1/2cz=1/2(a+b+c)r
=> ax = by = cz = a+b+c [*]
ta có:
ax = by = cz => a: (1/ x)= b:(1/ y)=c:(1/z)
=> (a+b+c): (1/x+1/y+1/z) = a+b+c
=> (1/x+1/y+1/z) = 1
Giả sử: 0 ≤ x ≤ y ≤ z =>1/x ≥1/y ≥ 1/z => 3/x ≤ 1 => x ≤ 3
Thử từng trường hợp:
*x=1. => Loại
*x=2 =>1/y+1 / z= ½. Mà x,y ϵ Z
=>y,z ϵ {(4,4);(3;6)}
y = z = 4 => 2a = 4b = 4c Áp dụng BDT tam giác vào tam giác ABH thấy ko thỏa mãn=>loại
y=3;z=4⇒2a=3b=4c (loại)
*x=3
x = y = z = 3 => a=b=c=> tam giácABC:đều (đpcm).
bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FK
a) chứng minh tam giác DEF là tam giác đều
b) chứng minh tam giác DIK là tam giác cân
c) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=n
bai 2: cho góc nhọn xOy . Điểm H nằm trên phân giác của góc xOy. Từ H dựng các dừong vuông góc xuống hai cạnh ox và oy( A thuộc Ox, B thuộc Oy)
a) chung minh tam giác HAB là tam giác cân
b) gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH . Chứng minh BC vuông góc với ox
c) khi góc xOy bằng 60 độ, OH = 4cm tính độ dài OA